Pei Jin, Liang Yinku, Xue Lihua, Zamanian Kazem, Sun Shiren, Li Wenwen, Zhang Sheng, Zhao Xiaoning
School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong, 723000, China.
Sci Rep. 2025 Jul 1;15(1):21823. doi: 10.1038/s41598-025-06859-0.
Biochar application can increase cultivated soil organic carbon (SOC) and fertility, especially in saline‒alkali soils facing climate change and salinization. To evaluate the effects of biochar application on SOC composition and structure, a 5-year maize field trial (2019-2023) was conducted in the Tarim River Basin, involving seven treatments with the following respective mineral N inputs (kg N ha), irrigation levels (mm) and biochar amendments (t ha): CONTROL (untreated soil), LNLW (100, 140, and 0), LNLWB (100, 140, and 10), MNMW (200, 220, and 0), MNMWB (200, 220, and 10), HNHW (300, 320, and 0), and HNHWB (300, 320, and 10). The SOC characteristics were analyzed after harvest. The results revealed that LNLWB produced the greatest increases in SOC (+61%), mineral-associated organic carbon (+54%), light fraction organic carbon (LFOC) (+322%), heavy fraction organic carbon (+3.5%), alkyl carbon/alkoxyl carbon ratio (+40%) and maize yield (+16%) but resulted in the greatest reduction in dissolved organic carbon (-37%), pore probability entropy (-0.8%) and fractal dimension (-6%). Biochar application increased SOC through increased LFOC and soil porosity and increased SOC stability through increased aromatic and humic properties, ultimately increasing yields. Biochar application resulted in significantly higher comprehensive scores (0.570.74) than treatments without biochar application (-0.56-0.49) based on principal component analysis of the SOC content and structure, and LNLWB had the highest score. Under greater biochar contributions, even 2/3 reduced N input (LNLW) performed well and represented the best low-carbon strategy in saline‒alkali soils.
施用生物炭可以增加耕地土壤有机碳(SOC)含量并提高土壤肥力,在面临气候变化和盐碱化的盐碱土壤中尤其如此。为了评估生物炭施用对SOC组成和结构的影响,在塔里木河流域进行了一项为期5年(2019 - 2023年)的玉米田间试验,包括七个处理,各处理的矿质氮投入量(kg N ha)、灌溉水平(mm)和生物炭施用量(t ha)分别如下:对照(未处理土壤)、LNLW(100、140和0)、LNLWB(100、140和10)、MNMW(200、220和0)、MNMWB(200、220和10)、HNHW(300、320和0)以及HNHWB(300、320和10)。收获后分析了SOC特征。结果表明,LNLWB处理使SOC增加最多(+61%)、矿物结合有机碳增加最多(+54%)、轻组有机碳(LFOC)增加最多(+322%)、重组有机碳增加(+3.5%)、烷基碳/烷氧基碳比率增加最多(+40%)且玉米产量增加最多(+16%),但导致溶解有机碳减少最多(-37%)、孔隙概率熵减少最多(-0.8%)和分形维数减少最多(-6%)。施用生物炭通过增加LFOC和土壤孔隙度提高了SOC含量,并通过增加芳香性和腐殖性提高了SOC稳定性,最终提高了产量。基于对SOC含量和结构的主成分分析,施用生物炭处理的综合得分(0.570.74)显著高于未施用生物炭处理(-0.56-0.49),且LNLWB得分最高。在生物炭贡献更大的情况下,即使减少2/3的氮投入(LNLW)也表现良好,是盐碱土壤中最佳的低碳策略。