Suppr超能文献

利用三维荧光光谱和深度学习技术预测玉米生物炭连续使用对土壤水溶性有机质的影响。

Prediction of Soil Water-Soluble Organic Matter by Continuous Use of Corn Biochar Using Three-Dimensional Fluorescence Spectra and Deep Learning.

机构信息

Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China.

College of Agricultural Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

出版信息

Comput Intell Neurosci. 2023 Mar 6;2023:7535594. doi: 10.1155/2023/7535594. eCollection 2023.

Abstract

The purpose is to study the soil's water-soluble organic matter and improve the utilization rate of the soil layer. This exploration is based on the theories of three-dimensional fluorescence spectroscopy, deep learning, and biochar. Chernozem in Harbin City, Heilongjiang Province, is taken as the research object. Three-dimensional fluorescence spectra and a deep learning model are used to analyze the content of water-soluble organic matter in the soil layer after continuous application of corn biochar for six years and to calculate different fluorescence indexes in the whole soil depth. Among them, the three-dimensional fluorescence spectrum theory provides the detection standard for the application effect detection of biochar, the deep learning theory provides the technical support for this exploration, and the biochar theory provides the specific research direction. The results show that the application of corn biochar for six consecutive years significantly reduces the average content of water-soluble organic matter in different soil layers. Among them, the highest average content of soil water-soluble organic matter is "nitrogen, potassium, phosphorous" (NPK) and the lowest is "boron, carbon" (BC). Comparing the soil with BC alone, in the topsoil, the second section (330-380 nm/200-250 nm) with BC + NPK increases by 13.3%, the third section (380-550 nm/220-250 nm) increases by 8.4%, and the fourth section (250-380 nm/250-600 nm) increases by 50.1%. The combination of nitrogen (N) + BC has a positive effect of 20.7%, 12.2%, and 28.4% on sections I, II, and IV, respectively. In addition, in the topsoil, the combination of NPK + BC significantly increases the content of acid-like substances compared with the application of BC alone. In the black soil, with or without fertilizer NPK, there is no significant difference in the level of fulvic acid-like components. The prediction of soil water-soluble organic matter after continuous application of corn biochar based on three-dimensional fluorescence spectra and deep learning is carried out, which has reference significance for the rapid identification and early prediction of subsequent soil activity.

摘要

本研究旨在探讨土壤水溶性有机质,提高土壤层的利用率。该研究基于三维荧光光谱、深度学习和生物炭理论,以黑龙江省哈尔滨市黑土为研究对象,采用三维荧光光谱和深度学习模型分析了连续 6 年施用玉米生物炭后土壤层中水溶性有机质的含量,并计算了整个土壤深度的不同荧光指数。其中,三维荧光光谱理论为生物炭应用效果检测提供了检测标准,深度学习理论为本次探索提供了技术支持,生物炭理论为具体研究方向提供了理论支撑。结果表明,连续 6 年施用玉米生物炭可显著降低不同土层水溶性有机质的平均含量。其中,土壤水溶性有机质含量最高的是“氮磷钾”(NPK),最低的是“硼碳”(BC)。与单独使用 BC 的土壤相比,在表层土壤中,BC+NPK 的第二段(330-380nm/200-250nm)增加了 13.3%,第三段(380-550nm/220-250nm)增加了 8.4%,第四段(250-380nm/250-600nm)增加了 50.1%。氮(N)+BC 的组合对 I、II 和 IV 段分别有 20.7%、12.2%和 28.4%的正效应。此外,在表层土壤中,与单独施用 BC 相比,NPK+BC 的组合显著增加了酸类物质的含量。在黑土中,有无化肥 NPK,富里酸类物质的水平没有显著差异。基于三维荧光光谱和深度学习对玉米生物炭连续施用后土壤水溶性有机质的预测,对后续土壤活性的快速识别和早期预测具有参考意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d479/10017222/772ac2e704c3/CIN2023-7535594.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验