Díaz Berenguer Abel, Bossa Matías Nicolás, Lebleu Julien, Pauwels Andries, Sahli Hichem
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussel, Belgium.
moveUP, Brussel, Belgium.
NPJ Digit Med. 2025 Jul 1;8(1):391. doi: 10.1038/s41746-025-01783-z.
This study introduces a Bayesian multidimensional hierarchical item response theory (MHIRT) model to improve patient-reported outcome (PRO) assessments in total knee arthroplasty (TKA). Traditional unidimensional scoring fails to capture the multifaceted nature of recovery. Our model uncovers latent traits and inter-item relationships directly from PROMs such as the OKS and the EQ-5D-3L, without relying on predefined subscales. MHIRT flexibly decomposes PROMs into clinically meaningful traits like pain, mobility, self-care, and confidence. These traits captured more domain-specific variation, showed stronger sensitivity to temporal changes, and better reflected demographic factors than traditional total scores. The model was trained on a large NHS dataset and externally validated on PROMs from the moveUP digital platform. In predictive modeling of postoperative outcomes, MHIRT-derived features consistently outperformed unidimensional scores and conventional multidimensional IRT models. These findings suggest that MHIRT offers a potentially interpretable framework for tracking recovery and predicting health outcomes.
本研究引入了一种贝叶斯多维分层项目反应理论(MHIRT)模型,以改善全膝关节置换术(TKA)中患者报告结局(PRO)的评估。传统的单维评分无法捕捉恢复的多方面性质。我们的模型直接从诸如牛津膝关节评分(OKS)和欧洲五维度健康量表(EQ-5D-3L)等患者报告结局测量指标(PROMs)中揭示潜在特征和项目间关系,而无需依赖预定义的子量表。MHIRT灵活地将PROMs分解为疼痛、活动能力、自我护理和信心等具有临床意义的特征。与传统总分相比,这些特征捕捉到了更多特定领域的变化,对时间变化表现出更强的敏感性,并且能更好地反映人口统计学因素。该模型在一个大型英国国家医疗服务体系(NHS)数据集上进行训练,并在来自moveUP数字平台的PROMs上进行外部验证。在术后结局的预测建模中,MHIRT衍生的特征始终优于单维评分和传统多维项目反应理论(IRT)模型。这些发现表明,MHIRT为跟踪恢复情况和预测健康结局提供了一个潜在可解释的框架。