Department of Biomedical Informatics and Medical Statistics, Medical Research Institute, University of Alexandria, 165, Horreya Avenue, Hadara, Alexandria, Egypt.
Department of Orthopaedic Surgery and Traumatology, El‑Hadra Hospital, University of Alexandria, Alexandria, Egypt.
J Orthop Surg Res. 2023 Feb 2;18(1):84. doi: 10.1186/s13018-023-03522-0.
EQ5D is a generic measure of health. It provides a single index value for health status that can be used in the clinical and economic evaluation of healthcare. Oxford Knee Score (OKS) is a joint-specific outcome measure tool designed to assess symptoms and function in osteoarthritis patients after joint replacement surgery. Though widely used, it has the disadvantage of lacking health index value. To fill the gap between functional and generic questionnaires with economic value, we linked generic EQ-5D-5L to the specific OKS to give a single index value for health status in KOA patients.
QUESTIONS/PURPOSES: Developing and evaluating an algorithm to estimate EuroQoL generic health utility scores (EQ-5D-5L) from the disease-specific OKS using data from patients with knee osteoarthritis (KO).
This is a cross-sectional study of 571 patients with KO. We used four distinct mapping algorithms: Cumulative Probability for Ordinal Data, Penalized Ordinal Regression, CART (Classification and Regression Trees), and Ordinal random forest. We compared the resultant models' degrees of accuracy.
Mobility was best predicted by penalized regression with pre-processed predictors, usual activities by random forest, pain/discomfort by cumulative probability with pre-processed predictors, self-care by random forest with RFE (recursive feature elimination) predictors, and anxiety/depression by CART with RFE predictors. Model accuracy was lowest with anxiety/depression and highest with mobility and usual activities. Using available country value sets, the average MAE was 0.098 ± 0.022, ranging from 0.063 to 0.142; and the average MSE was 0.020 ± 0.008 ranging from 0.008 to 0.042.
The current study derived accurate mapping techniques from OKS to the domains of EQ-5D-5L, allowing for the computation of QALYs in economic evaluations. A machine learning-based strategy offers a viable mapping alternative that merits further exploration.
EQ5D 是一种通用的健康衡量标准。它提供了一个单一的健康状况指数,可以用于医疗保健的临床和经济评估。牛津膝关节评分(OKS)是一种专门用于评估膝关节置换手术后骨关节炎患者症状和功能的关节特异性结果测量工具。虽然被广泛使用,但它缺乏健康指数值的缺点。为了填补具有经济价值的功能和通用问卷之间的空白,我们将通用 EQ-5D-5L 与特定的 OKS 联系起来,为 KOA 患者的健康状况提供单一的指数值。
问题/目的:开发和评估一种使用膝关节骨关节炎(KO)患者数据从特定于疾病的 OKS 估计欧洲五维健康量表(EQ-5D-5L)通用健康效用评分的算法。
这是一项对 571 例 KO 患者的横断面研究。我们使用了四种不同的映射算法:累积概率有序数据、惩罚有序回归、CART(分类和回归树)和有序随机森林。我们比较了模型的精度。
移动性最好由预处理预测因子的惩罚回归预测,常规活动由随机森林预测,疼痛/不适由预处理预测因子的累积概率预测,自我护理由 RFE(递归特征消除)预测因子的随机森林预测,焦虑/抑郁由 RFE 预测因子的 CART 预测。焦虑/抑郁的模型准确性最低,移动性和常规活动的准确性最高。使用可用的国家价值集,平均 MAE 为 0.098±0.022,范围为 0.063 至 0.142;平均 MSE 为 0.020±0.008,范围为 0.008 至 0.042。
本研究从 OKS 到 EQ-5D-5L 的各个领域得出了准确的映射技术,从而可以在经济评估中计算 QALYs。基于机器学习的策略提供了一种可行的映射替代方案,值得进一步探索。