Suppr超能文献

基于改进麻雀搜索算法优化的核极限学习机的电力负荷预测

Electric load forecasting based on kernel extreme learning machine optimized by improved sparrow search algorithm.

作者信息

Zhang Diming, Xu Yuchen, Li Yuanjiang

机构信息

Computer Science Department, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.

Ocean Department, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):22273. doi: 10.1038/s41598-025-07755-3.

Abstract

Electric load forecasting's accuracy and reliability are pivotal for enhancing the dispatch efficiency of power systems and the integration of renewable energy into the grid. In response to this need, this paper introduces a novel electric load forecasting framework. Initially, to address the limitations of the Sparrow Search Algorithm (SSA), we propose a multi-strategy improved SSA with dynamic inertia weight (WHFSSA). This enhancement involves balancing the global and local search capabilities by introducing dynamic inertia weights, employing a suboptimal solution guidance strategy to facilitate the escape from local optima, and applying dimension-wise dynamic reverse learning to boost population diversity and quality, thereby hastening convergence. Subsequently, we optimize the parameters of Variational Mode Decomposition (VMD) using the improved SSA (WHFSSA) to achieve precise decomposition of electric load sequences into more regular subsequences. These subsequences are then integrated with the Kernel Extreme Learning Machine (KELM) to develop a forecasting model named WHFSSA-KELM. The efficacy of this model is validated on two electric load datasets across different forecasting tasks. In Dataset 1, the focus is on the impact of temperature and historical load on future load values. The results show that the proposed model realizes an average improvement of 5.7% in the R2 metric compared to benchmark models. In Dataset 2, which considers various additional factors influencing electric load, the model's performance is assessed for three-step-ahead forecasting. It achieves average R2 metric improvements of 5.6%, 7.6%, and 10.9% for the three-step-ahead forecasts, respectively, compared to benchmark models. Consequently, the proposed method offers more accurate forecasting, contributing to the safe and stable operation of power systems.

摘要

电力负荷预测的准确性和可靠性对于提高电力系统的调度效率以及可再生能源并入电网至关重要。针对这一需求,本文介绍了一种新颖的电力负荷预测框架。首先,为解决麻雀搜索算法(SSA)的局限性,我们提出了一种具有动态惯性权重的多策略改进麻雀搜索算法(WHFSSA)。这种改进包括通过引入动态惯性权重来平衡全局和局部搜索能力,采用次优解引导策略以促进从局部最优解中逃离,并应用维度动态反向学习来提高种群多样性和质量,从而加速收敛。随后,我们使用改进的麻雀搜索算法(WHFSSA)优化变分模态分解(VMD)的参数,以实现将电力负荷序列精确分解为更规则的子序列。然后将这些子序列与核极限学习机(KELM)相结合,开发出一种名为WHFSSA - KELM的预测模型。该模型的有效性在两个不同预测任务的电力负荷数据集上得到了验证。在数据集1中,重点是温度和历史负荷对未来负荷值的影响。结果表明,与基准模型相比,所提出的模型在R2指标上平均提高了5.7%。在考虑影响电力负荷的各种附加因素的数据集2中,对该模型进行了三步超前预测的性能评估。与基准模型相比,其在三步超前预测中的R2指标平均分别提高了5.6%、7.6%和10.9%。因此,所提出的方法提供了更准确的预测,有助于电力系统的安全稳定运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54cb/12217635/f3edc317dafb/41598_2025_7755_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验