Suppr超能文献

ES-dRNN:一种用于短期负荷预测的指数平滑与扩张循环神经网络混合模型

ES-dRNN: A Hybrid Exponential Smoothing and Dilated Recurrent Neural Network Model for Short-Term Load Forecasting.

作者信息

Smyl Slawek, Dudek Grzegorz, Pelka Pawel

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11346-11358. doi: 10.1109/TNNLS.2023.3259149. Epub 2024 Aug 5.

Abstract

Short-term load forecasting (STLF) is challenging due to complex time series (TS) which express three seasonal patterns and a nonlinear trend. This article proposes a novel hybrid hierarchical deep-learning (DL) model that deals with multiple seasonality and produces both point forecasts and predictive intervals (PIs). It combines exponential smoothing (ES) and a recurrent neural network (RNN). ES extracts dynamically the main components of each individual TS and enables on-the-fly deseasonalization, which is particularly useful when operating on a relatively small dataset. A multilayer RNN is equipped with a new type of dilated recurrent cell designed to efficiently model both short and long-term dependencies in TS. To improve the internal TS representation and thus the model's performance, RNN learns simultaneously both the ES parameters and the main mapping function transforming inputs into forecasts. We compare our approach against several baseline methods, including classical statistical methods and machine learning (ML) approaches, on STLF problems for 35 European countries. The empirical study clearly shows that the proposed model has high expressive power to solve nonlinear stochastic forecasting problems with TS including multiple seasonality and significant random fluctuations. In fact, it outperforms both statistical and state-of-the-art ML models in terms of accuracy.

摘要

短期负荷预测(STLF)具有挑战性,因为复杂的时间序列(TS)呈现出三种季节性模式和非线性趋势。本文提出了一种新颖的混合分层深度学习(DL)模型,该模型可处理多重季节性并生成点预测和预测区间(PI)。它结合了指数平滑(ES)和递归神经网络(RNN)。ES动态提取每个单独时间序列的主要成分,并实现实时去季节性,这在处理相对较小的数据集时特别有用。多层RNN配备了一种新型的扩张递归单元,旨在有效地对时间序列中的短期和长期依赖性进行建模。为了改善内部时间序列表示从而提高模型性能,RNN同时学习ES参数和将输入转换为预测的主要映射函数。我们将我们的方法与几种基线方法进行比较,包括经典统计方法和机器学习(ML)方法,用于35个欧洲国家的短期负荷预测问题。实证研究清楚地表明,所提出的模型具有很高的表达能力,能够解决具有多重季节性和显著随机波动的时间序列的非线性随机预测问题。事实上,在准确性方面,它优于统计模型和最先进的机器学习模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验