利用蛋白质结构预测和蛋白质-蛋白质对接预测合成结合蛋白的表位
Predicting Epitopes of Synthetic Binding Proteins Using Protein Structure Prediction and Protein-Protein Docking.
作者信息
Mijit Arzu, Li Yanlin, Xue Weiwei
机构信息
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
出版信息
Methods Mol Biol. 2025;2937:245-259. doi: 10.1007/978-1-0716-4591-8_15.
Synthetic binding proteins (SBPs) engineered from privileged protein scaffolds usually have high specificity to protein target. However, epitope information of currently known SBPs is still limited, which hinders the development of protein binders with desired function. Herein, a framework combining protein structure prediction (AlphaFold2) and protein-protein docking (HawkDock and RosettaDock) was designed for predicting the epitope of specific SBP. Using the experimental structure of a nanobody in complex with SARS-CoV-2 receptor binding domain (RBD) as an example, the computational framework perfectly reproduced the binding mode between the SBP and target protein. Therefore, the strategy can be expanded to predict the epitopes of other SBPs, which may provide useful information for understanding the molecular mechanism of protein-protein recognition, but also facilitate the rational design of novel SBPs with enhanced properties.
从优势蛋白支架工程改造而来的合成结合蛋白(SBP)通常对蛋白质靶标具有高特异性。然而,目前已知SBP的表位信息仍然有限,这阻碍了具有所需功能的蛋白质结合剂的开发。在此,设计了一个结合蛋白质结构预测(AlphaFold2)和蛋白质-蛋白质对接(HawkDock和RosettaDock)的框架,用于预测特定SBP的表位。以一个纳米抗体与严重急性呼吸综合征冠状病毒2(SARS-CoV-2)受体结合域(RBD)复合物的实验结构为例,该计算框架完美再现了SBP与靶蛋白之间的结合模式。因此,该策略可扩展用于预测其他SBP的表位,这不仅可为理解蛋白质-蛋白质识别的分子机制提供有用信息,还有助于合理设计具有增强特性的新型SBP。