Department of Pediatric Dentistry, Faculty of Dentistry, Eskisehir Osmangazi University, Eskişehir, Turkey.
Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskisehir Osmangazi University, Eskişehir, Turkey.
BMC Oral Health. 2023 Oct 17;23(1):764. doi: 10.1186/s12903-023-03532-8.
BACKGROUND: Panoramic radiographs, in which anatomic landmarks can be observed, are used to detect cases closely related to pediatric dentistry. The purpose of the study is to investigate the success and reliability of the detection of maxillary and mandibular anatomic structures observed on panoramic radiographs in children using artificial intelligence. METHODS: A total of 981 mixed images of pediatric patients for 9 different pediatric anatomic landmarks including maxillary sinus, orbita, mandibular canal, mental foramen, foramen mandible, incisura mandible, articular eminence, condylar and coronoid processes were labelled, the training was carried out using 2D convolutional neural networks (CNN) architectures, by giving 500 training epochs and Pytorch-implemented YOLO-v5 models were produced. The success rate of the AI model prediction was tested on a 10% test data set. RESULTS: A total of 14,804 labels including maxillary sinus (1922), orbita (1944), mandibular canal (1879), mental foramen (884), foramen mandible (1885), incisura mandible (1922), articular eminence (1645), condylar (1733) and coronoid (990) processes were made. The most successful F1 Scores were obtained from orbita (1), incisura mandible (0.99), maxillary sinus (0.98), and mandibular canal (0.97). The best sensitivity values were obtained from orbita, maxillary sinus, mandibular canal, incisura mandible, and condylar process. The worst sensitivity values were obtained from mental foramen (0.92) and articular eminence (0.92). CONCLUSIONS: The regular and standardized labelling, the relatively larger areas, and the success of the YOLO-v5 algorithm contributed to obtaining these successful results. Automatic segmentation of these structures will save time for physicians in clinical diagnosis and will increase the visibility of pathologies related to structures and the awareness of physicians.
背景:全景片可以观察到解剖标志,用于检测与儿童牙科密切相关的病例。本研究旨在探讨使用人工智能检测儿童全景片中上颌和下颌解剖结构的成功率和可靠性。
方法:对 9 名不同儿科解剖标志的儿童混合图像(包括上颌窦、眼眶、下颌管、颏孔、下颌孔、下颌切迹、关节突、髁突和喙突)进行了 981 次标注,使用二维卷积神经网络(CNN)架构进行训练,给予 500 个训练周期,并生成了基于 PyTorch 的 YOLO-v5 模型。在 10%的测试数据集上测试了人工智能模型预测的成功率。
结果:共标注了 14804 个标签,包括上颌窦(1922 个)、眼眶(1944 个)、下颌管(1879 个)、颏孔(884 个)、下颌孔(1885 个)、下颌切迹(1922 个)、关节突(1645 个)、髁突(1733 个)和喙突(990 个)。眼眶(1)、下颌切迹(0.99)、上颌窦(0.98)和下颌管(0.97)的 F1 得分最高。眼眶、上颌窦、下颌管、下颌切迹和髁突的灵敏度值最高。颏孔(0.92)和关节突(0.92)的灵敏度值最低。
结论:规范和标准化的标注、相对较大的区域以及 YOLO-v5 算法的成功,有助于获得这些成功的结果。这些结构的自动分割将为医生的临床诊断节省时间,并提高与结构相关的病理的可见性和医生的意识。
J Ayub Med Coll Abbottabad. 2015
Acta Odontol Scand. 2011-11-14
Med Oral Patol Oral Cir Bucal. 2014-3-1
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998-8
Dentomaxillofac Radiol. 2024-10-1
Healthcare (Basel). 2024-6-30
Dentomaxillofac Radiol. 2024-6-28
Life (Basel). 2022-11-15
Int J Oral Maxillofac Surg. 2022-11
Healthcare (Basel). 2021-11-12
Int J Comput Assist Radiol Surg. 2021-12
Diagnostics (Basel). 2021-8-15