文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一项人工智能研究:在儿科人群的全景片上自动描述解剖标志。

An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population.

机构信息

Department of Pediatric Dentistry, Faculty of Dentistry, Eskisehir Osmangazi University, Eskişehir, Turkey.

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskisehir Osmangazi University, Eskişehir, Turkey.

出版信息

BMC Oral Health. 2023 Oct 17;23(1):764. doi: 10.1186/s12903-023-03532-8.


DOI:10.1186/s12903-023-03532-8
PMID:37848870
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10583406/
Abstract

BACKGROUND: Panoramic radiographs, in which anatomic landmarks can be observed, are used to detect cases closely related to pediatric dentistry. The purpose of the study is to investigate the success and reliability of the detection of maxillary and mandibular anatomic structures observed on panoramic radiographs in children using artificial intelligence. METHODS: A total of 981 mixed images of pediatric patients for 9 different pediatric anatomic landmarks including maxillary sinus, orbita, mandibular canal, mental foramen, foramen mandible, incisura mandible, articular eminence, condylar and coronoid processes were labelled, the training was carried out using 2D convolutional neural networks (CNN) architectures, by giving 500 training epochs and Pytorch-implemented YOLO-v5 models were produced. The success rate of the AI model prediction was tested on a 10% test data set. RESULTS: A total of 14,804 labels including maxillary sinus (1922), orbita (1944), mandibular canal (1879), mental foramen (884), foramen mandible (1885), incisura mandible (1922), articular eminence (1645), condylar (1733) and coronoid (990) processes were made. The most successful F1 Scores were obtained from orbita (1), incisura mandible (0.99), maxillary sinus (0.98), and mandibular canal (0.97). The best sensitivity values were obtained from orbita, maxillary sinus, mandibular canal, incisura mandible, and condylar process. The worst sensitivity values were obtained from mental foramen (0.92) and articular eminence (0.92). CONCLUSIONS: The regular and standardized labelling, the relatively larger areas, and the success of the YOLO-v5 algorithm contributed to obtaining these successful results. Automatic segmentation of these structures will save time for physicians in clinical diagnosis and will increase the visibility of pathologies related to structures and the awareness of physicians.

摘要

背景:全景片可以观察到解剖标志,用于检测与儿童牙科密切相关的病例。本研究旨在探讨使用人工智能检测儿童全景片中上颌和下颌解剖结构的成功率和可靠性。

方法:对 9 名不同儿科解剖标志的儿童混合图像(包括上颌窦、眼眶、下颌管、颏孔、下颌孔、下颌切迹、关节突、髁突和喙突)进行了 981 次标注,使用二维卷积神经网络(CNN)架构进行训练,给予 500 个训练周期,并生成了基于 PyTorch 的 YOLO-v5 模型。在 10%的测试数据集上测试了人工智能模型预测的成功率。

结果:共标注了 14804 个标签,包括上颌窦(1922 个)、眼眶(1944 个)、下颌管(1879 个)、颏孔(884 个)、下颌孔(1885 个)、下颌切迹(1922 个)、关节突(1645 个)、髁突(1733 个)和喙突(990 个)。眼眶(1)、下颌切迹(0.99)、上颌窦(0.98)和下颌管(0.97)的 F1 得分最高。眼眶、上颌窦、下颌管、下颌切迹和髁突的灵敏度值最高。颏孔(0.92)和关节突(0.92)的灵敏度值最低。

结论:规范和标准化的标注、相对较大的区域以及 YOLO-v5 算法的成功,有助于获得这些成功的结果。这些结构的自动分割将为医生的临床诊断节省时间,并提高与结构相关的病理的可见性和医生的意识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48fb/10583406/074f0b098b66/12903_2023_3532_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48fb/10583406/77d7f7ca65b7/12903_2023_3532_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48fb/10583406/074f0b098b66/12903_2023_3532_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48fb/10583406/77d7f7ca65b7/12903_2023_3532_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48fb/10583406/074f0b098b66/12903_2023_3532_Fig2_HTML.jpg

相似文献

[1]
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population.

BMC Oral Health. 2023-10-17

[2]
The evaluation of vertical heights of maxillary and mandibular bones and the location of anatomic landmarks in panoramic radiographs of edentulous patients for implant dentistry.

J Oral Rehabil. 2005-10

[3]
Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection.

Artif Intell Med. 2020-3

[4]
LOCALIZATION OF THE MANDIBULAR FORAMEN ON THE PANORAMIC RADIOGRAPHS.

J Ayub Med Coll Abbottabad. 2015

[5]
Appearance of anatomical structures of mandible on panoramic radiographs in Iranian population.

Acta Odontol Scand. 2011-11-14

[6]
Identification of the mandibular landmarks in a pediatric population.

Med Oral Patol Oral Cir Bucal. 2014-3-1

[7]
YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition.

BMC Med Imaging. 2024-7-11

[8]
Automatic detection of the mental foramen for estimating mandibular cortical width in dental panoramic radiographs: the seventh survey of the Tromsø Study (Tromsø7) in 2015-2016.

J Int Med Res. 2022-11

[9]
Detection of the mandibular canal and the mental foramen in panoramic radiographs: intraexaminer agreement.

J Oral Implantol. 2012-2

[10]
Radiographic localization of mandibular anesthesia landmarks.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998-8

引用本文的文献

[1]
Evaluation of the effectiveness of artificial intelligence models in radiopaque and radiolucent lesions of the maxillofacial region on panoramic radiographs.

Oral Radiol. 2025-7-1

[2]
Segmentation of Pulp and Pulp Stones with Automatic Deep Learning in Panoramic Radiographs: An Artificial Intelligence Study.

Dent J (Basel). 2025-6-19

[3]
Assessment of the Diagnostic Accuracy of Artificial Intelligence Software in Identifying Common Periodontal and Restorative Dental Conditions (Marginal Bone Loss, Periapical Lesion, Crown, Restoration, Dental Caries) in Intraoral Periapical Radiographs.

Diagnostics (Basel). 2025-6-4

[4]
Segmentation of airways and soft tissues on panoramic radiographs using artificial intelligence technology.

BMC Oral Health. 2025-6-2

[5]
Evaluation of the Performance of a YOLOv10-Based Deep Learning Model for Tooth Detection and Numbering on Panoramic Radiographs of Patients in the Mixed Dentition Period.

Diagnostics (Basel). 2025-2-7

[6]
Automatic deep learning detection of overhanging restorations in bitewing radiographs.

Dentomaxillofac Radiol. 2024-10-1

[7]
The Implications of Artificial Intelligence in Pedodontics: A Scoping Review of Evidence-Based Literature.

Healthcare (Basel). 2024-6-30

[8]
YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition.

BMC Med Imaging. 2024-7-11

[9]
DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs.

Dentomaxillofac Radiol. 2024-6-28

本文引用的文献

[1]
Detection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: a retrospective study.

Quintessence Int. 2023-9-19

[2]
Artificial Intelligence (AI) for Detection and Localization of Unobturated Second Mesial Buccal (MB2) Canals in Cone-Beam Computed Tomography (CBCT).

Diagnostics (Basel). 2022-12-18

[3]
Effectiveness of cone-beam computed tomography-generated cephalograms using artificial intelligence cephalometric analysis.

Sci Rep. 2022-11-29

[4]
Artificial Intelligence as an Aid in CBCT Airway Analysis: A Systematic Review.

Life (Basel). 2022-11-15

[5]
Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review.

Oral Radiol. 2023-1

[6]
Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks.

J Dent. 2022-7

[7]
Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs.

Int J Oral Maxillofac Surg. 2022-11

[8]
Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy.

Healthcare (Basel). 2021-11-12

[9]
Automated description of the mandible shape by deep learning.

Int J Comput Assist Radiol Surg. 2021-12

[10]
Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children.

Diagnostics (Basel). 2021-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索