Chan Lap Sum, Li Gen, Fauman Eric B, Yin Xianyong, Laakso Markku, Boehnke Michael, Song Peter X K
Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA.
Nat Commun. 2025 Jul 1;16(1):5789. doi: 10.1038/s41467-025-60439-4.
In a standard analysis, pleiotropic variants are identified by running separate genome-wide association studies (GWAS) and combining results across traits. But such statistical approach based on marginal summary statistics may lead to spurious results. We propose a new statistical approach, Debiased-regularized Factor Analysis Regression Model (DrFARM), through a joint regression model for simultaneous analysis of high-dimensional genetic variants and multilevel dependencies. This joint modeling strategy controls overall error to permit universal false discovery rate (FDR) control. DrFARM uses the strengths of the debiasing technique and the Cauchy combination test, both being theoretically justified, to establish a valid post selection inference on pleiotropic variants. Through extensive simulations, we show that DrFARM appropriately controls overall FDR. Applying DrFARM to data on 1031 metabolites measured on 6135 men from the Metabolic Syndrome in Men (METSIM) study, we identify five first-time reported putative causal genes, none of which had been implicated in any prior metabolite GWAS (including the prior METSIM analysis).
在标准分析中,多效性变异是通过开展单独的全基因组关联研究(GWAS)并整合各性状的结果来识别的。但这种基于边际汇总统计量的统计方法可能会导致虚假结果。我们提出了一种新的统计方法——去偏正则化因子分析回归模型(DrFARM),它通过一个联合回归模型来同时分析高维遗传变异和多级依赖性。这种联合建模策略控制总体误差以实现通用错误发现率(FDR)控制。DrFARM利用去偏技术和柯西组合检验的优势(二者在理论上均合理),对多效性变异建立有效的选择后推断。通过大量模拟,我们表明DrFARM能够适当地控制总体FDR。将DrFARM应用于男性代谢综合征(METSIM)研究中对6135名男性测量的1031种代谢物的数据,我们识别出五个首次报道的假定因果基因,其中没有一个在任何先前的代谢物GWAS(包括先前的METSIM分析)中被涉及。