Chae Byeong-Gyu, Won Jeong Yeon, Shin Young Sik, Yun Dong Jin, Ahn Jae Min, Park Seon Tae, Lee Ki-Bum, An Hokyun, Seol Mina, Ro I-Jun, Kim Se-Ho, Chung Chunhyung, Lee Eunha
Analytical Engineering Group, Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd, Suwon, Republic of Korea.
Process Development Team, Semiconductor R&D Center, Samsung Electronics Co., Ltd, Hwaseong, Republic of Korea.
Nat Commun. 2025 Jul 1;16(1):5612. doi: 10.1038/s41467-025-60732-2.
The distribution of nitrogen in semiconductor devices plays a crucial role in tuning their physical and electrical properties. However, direct observation and precise quantification of nitrogen remain challenging because of analytical limitations, particularly at critical interfaces in silicon-based semiconductors. Although atom probe tomography has emerged as a powerful tool, distinguishing nitrogen from silicon without isotope doping is persistently difficult. In this study, we employ advanced atom probe tomography with an extended flight path under optimized conditions to characterize the three-dimensional nitrogen distribution in actual device structures, including 2- and 5-nm-thick silicon dioxide/silicon oxynitride-based gate dielectrics and a fin-structured three-dimensional device. Our analysis reveals that the nitrogen distribution determines the formation of the nitrogen profile in gate dielectrics, which in turn affects the diffusion of impurities, ultimately impacting the electrical properties and reliability. Our work provides insights into atomic-scale nitrogen behavior, paving the way for advancing next-generation semiconductor devices.
氮在半导体器件中的分布在调节其物理和电学性质方面起着至关重要的作用。然而,由于分析上的限制,尤其是在硅基半导体的关键界面处,对氮的直接观察和精确量化仍然具有挑战性。尽管原子探针断层扫描已成为一种强大的工具,但在没有同位素掺杂的情况下将氮与硅区分开来一直很困难。在本研究中,我们采用了在优化条件下具有扩展飞行路径的先进原子探针断层扫描技术,以表征实际器件结构中的三维氮分布,包括基于2纳米和5纳米厚二氧化硅/氮氧化硅的栅极电介质以及鳍式结构的三维器件。我们的分析表明,氮分布决定了栅极电介质中氮分布的形成,进而影响杂质的扩散,最终影响电学性质和可靠性。我们的工作为原子尺度的氮行为提供了见解,为推进下一代半导体器件铺平了道路。