Suppr超能文献

在原子级薄的TaS中观察到缓慢且高度受限的等离激元。

Slow and highly confined plasmons observed in atomically thin TaS.

作者信息

Do Hue T B, Zhao Meng, Li Pengfei, Soh Yu Wei, Rangaraj Jagadesh, Liu Bingyan, Jiang Tianyu, Zhang Xinyue, Lu Jiong, Song Peng, Teng Jinghua, Bosman Michel

机构信息

Department of Materials Science and Engineering, National University of Singapore, National University of Singapore, Singapore, Singapore.

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

出版信息

Nat Commun. 2025 Jul 1;16(1):5801. doi: 10.1038/s41467-025-60814-1.

Abstract

Extreme light confinement down to the atomic scale has been theoretically predicted for ultrathin, Ta-based transition metal dichalcogenides (TMDs). In this work, we report the observation of highly confined plasmons in 2H-TaS monolayers and bilayers via momentum-resolved electron energy loss spectroscopy (q-EELS), with a resolution of 0.0056 Å. Momentum-dispersed two-dimensional (2D) plasmon resonances were found to exhibit a lateral confinement ratio up to 300 at large wave vectors of q = 0.15 Å and slow light behaviour with a group velocity ~10c. Moreover, we observed a transition from 2D to 3D Coulomb interaction in the high-momentum regime, equivalent to light confinement volumes of 1-2 nm. Remarkably, the resonant modes do not enter the electron-hole continuum, potentially enabling even further enhanced optical field confinements for this material at cryogenic temperatures.

摘要

理论预测表明,超薄的钽基过渡金属二硫族化合物(TMDs)能够将光限制在原子尺度。在本研究中,我们通过动量分辨电子能量损失谱(q-EELS),分辨率为0.0056 Å,报告了在2H-TaS单层和双层中观察到的高度受限等离子体激元。在q = 0.15 Å的大波矢处,动量色散二维(2D)等离子体激元共振的横向限制比高达300,并具有群速度约为10c的慢光行为。此外,我们在高动量区域观察到从二维到三维库仑相互作用的转变,等效于1-2 nm的光限制体积。值得注意的是,共振模式未进入电子-空穴连续区,这可能使得该材料在低温下能够实现进一步增强的光场限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3283/12216657/7b32895f3834/41467_2025_60814_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验