da Jornada Felipe H, Xian Lede, Rubio Angel, Louie Steven G
Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2020 Feb 21;11(1):1013. doi: 10.1038/s41467-020-14826-8.
Plasmons depend strongly on dimensionality: while plasmons in three-dimensional systems start with finite energy at wavevector q = 0, plasmons in traditional two-dimensional (2D) electron gas disperse as [Formula: see text]. However, besides graphene, plasmons in real, atomically thin quasi-2D materials were heretofore not well understood. Here we show that the plasmons in real quasi-2D metals are qualitatively different, being virtually dispersionless for wavevectors of typical experimental interest. This stems from a broken continuous translational symmetry which leads to interband screening; so, dispersionless plasmons are a universal intrinsic phenomenon in quasi-2D metals. Moreover, our ab initio calculations reveal that plasmons of monolayer metallic transition metal dichalcogenides are tunable, long lived, able to sustain field intensity enhancement exceeding 10, and localizable in real space (within ~20 nm) with little spreading over practical measurement time. This opens the possibility of tracking plasmon wave packets in real time for novel imaging techniques in atomically thin materials.
在三维系统中,等离激元在波矢q = 0处从有限能量开始,而传统二维电子气中的等离激元则按[公式:见正文]色散。然而,除了石墨烯之外,真实的原子级薄准二维材料中的等离激元迄今尚未得到很好的理解。在此我们表明,真实准二维金属中的等离激元在性质上有所不同,对于典型实验感兴趣的波矢,它们几乎没有色散。这源于连续平移对称性的破缺,从而导致带间屏蔽;因此,无色散等离激元是准二维金属中一种普遍的固有现象。此外,我们的第一性原理计算表明,单层金属过渡金属二硫属化物的等离激元是可调节的、寿命长的,能够维持超过10的场强增强,并且在实际测量时间内能够在实空间(约20纳米范围内)定位且几乎不扩散。这为在原子级薄材料中采用新型成像技术实时追踪等离激元波包开辟了可能性。