利用时间演化的偏振敏感突触电子学在复杂光环境下进行多维视觉信息处理。

Multi-dimensional visual information processing under complex light environments using time-evolved polarization-sensitive synaptic electronics.

作者信息

Yang Yaqian, Ran Wenhao, Li Ying, Chen Yancheng, Chen Di, Shen Guozhen

机构信息

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5665. doi: 10.1038/s41467-025-61361-5.

Abstract

Biological vision system-inspired optoelectronic synapses integrate sensing, memory, and processing for external information perception. However, most efforts focus on spatial expansion while overlooking critical dimensions like polarization and temporal evolution, which are critical for information extraction in complex environments. Inspired by the polarization-sensitive properties of kingfisher vision, we develop a polarization-sensitive optoelectronic synapse array device based on PEASnI microwires array. Their anisotropic properties ensure polarization recognition, achieving a dichroic ratio of 1.38. And the asymmetric electrode designs create differentiated contact barriers, facilitating efficient charge storage and erasure under low power consumption. By employing four polarization-state-dependent convolutional kernels, the device demonstrates edge extraction capabilities even under 50% salt pepper noise. Furthermore, it enables high-precision in-sensor reservoir computing, with 100% accuracy in extracting fish trajectories under complex light environments. This work demonstrates motion perception in complex environments and provides a foundation for developing multi-dimensional, time-resolved visual systems for intelligent sensing and recognition.

摘要

受生物视觉系统启发的光电突触集成了传感、记忆和外部信息感知处理功能。然而,大多数研究都集中在空间扩展上,而忽略了诸如偏振和时间演化等关键维度,这些维度对于复杂环境中的信息提取至关重要。受翠鸟视觉的偏振敏感特性启发,我们基于PEASnI微线阵列开发了一种偏振敏感光电突触阵列器件。它们的各向异性特性确保了偏振识别,实现了1.38的二向色比。并且不对称电极设计创造了差异化的接触势垒,有助于在低功耗下进行高效的电荷存储和擦除。通过采用四个偏振态相关的卷积核,该器件即使在50%椒盐噪声下也能展现边缘提取能力。此外,它还能实现高精度的传感器内储层计算,在复杂光照环境下提取鱼类轨迹的准确率达到100%。这项工作展示了在复杂环境中的运动感知,并为开发用于智能传感和识别的多维、时间分辨视觉系统奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d0a/12216041/7429842cd6ef/41467_2025_61361_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索