Liao Wenjun, Xiong Qing, Chen Zilong, Tan Jinhui, Li Pingfei, Gharoei Hadi
Control and Safety Key Laboratory of Sichuan Province, School of Automobile and Transportation, Xihua University, Chengdu, 610039, Sichuan, China.
Chengdu Vocational and Technical Collage of Industry, No. 818, Da'an Road, Zhengxing Street, Tianfu New District, Chengdu, 610213, Sichuan, China.
Sci Rep. 2025 Jul 1;15(1):21205. doi: 10.1038/s41598-025-03212-3.
This paper presents a new stochastic-intelligent framework for sizing and energy management of a hybrid renewable energy system consisting of photovoltaic (PV), wind turbine, and hydrogen energy storage-based fuel cells (PV/Wind/FC). The framework incorporates a cloud model to address uncertainties in renewable generation and system load, with aim of the cost of energy (COE) while satisfying the loss of energy probability (LOEP). An improved Walrus Optimizer (IWO) with a piecewise linear chaotic map is applied to determine the optimal system component sizes. The model's effectiveness is evaluated through deterministic and stochastic scenarios using real meteorological data from Beijing, Guangzhou, Kashi, and Xining, China. The deterministic results clear that the PV/Wind/FC system outperforms other configurations, achieving the lowest COE and LOEP. The COE values for Beijing, Guangzhou, Kashi, and Xining are 0.260, 0.202, 0.246, and 0.217 $/kWh, respectively. The IWO algorithm demonstrates superior performance compared to traditional methods such as WO, PSO, MRFO, and GWO in terms of COE, reliability, convergence speed, and stability. In the stochastic approach based on cloud model, the COE increases by 13.84%, 14.85%, 10.97%, and 15.66% for the respective regions, highlighting the impact of renewable generation and system demand uncertainties. Additionally, the cloud model findings demonstrate how uncertainty distributions impact the system's operation, with the variation in cloud model droplets on both sides of the expected value reflecting the effects of renewable generation and demand uncertainties. This provides a more comprehensive and reliable framework for HRES design under uncertain conditions compared to the deterministic model.
本文提出了一种新的随机智能框架,用于对由光伏(PV)、风力涡轮机和基于氢能存储的燃料电池组成的混合可再生能源系统(PV/Wind/FC)进行规模确定和能量管理。该框架纳入了云模型,以解决可再生能源发电和系统负荷中的不确定性问题,目标是在满足能量损失概率(LOEP)的同时降低能源成本(COE)。采用带有分段线性混沌映射的改进海象优化器(IWO)来确定系统组件的最优尺寸。利用来自中国北京、广州、喀什和西宁的真实气象数据,通过确定性和随机场景对该模型的有效性进行了评估。确定性结果表明,PV/Wind/FC系统优于其他配置,实现了最低的COE和LOEP。北京、广州、喀什和西宁的COE值分别为0.260、0.202、0.246和0.217美元/千瓦时。在COE、可靠性、收敛速度和稳定性方面,IWO算法与传统方法如WO、PSO、MRFO和GWO相比表现出卓越的性能。在基于云模型的随机方法中,各地区的COE分别增加了13.84%、14.85%、10.97%和15.66%,突出了可再生能源发电和系统需求不确定性的影响。此外,云模型的结果展示了不确定性分布如何影响系统运行,期望值两侧云模型液滴的变化反映了可再生能源发电和需求不确定性的影响。与确定性模型相比,这为不确定条件下的混合可再生能源系统设计提供了一个更全面、可靠的框架。