Suppr超能文献

用于石灰石煅烧粘土水泥混凝土配合比设计的混合预测与多目标优化框架

A hybrid prediction and multi-objective optimization framework for limestone calcined clay cement concrete mixture design.

作者信息

Chen Xi, Chen Weiyi, Li Zongao, Zhang Pu

机构信息

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

School of Civil Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):22120. doi: 10.1038/s41598-025-05288-3.

Abstract

Limestone calcined clay cement (LC) is a promising low-carbon construction material in terms of its comparable mechanical performance to ordinary Portland cement (OPC) but a much less embodied carbon footprint. Previous literature have demonstrated that the large-scale implementation of LC can reduce embodied CO emissions associated with OPC production by at least 30%. This study proposes a hybrid framework combining machine learning (ML) and multi-objective optimization (MOO) to design cost-effective and eco-friendly LC mixtures. A dataset of 387 LC specimens was constructed to develop ML models for predicting compressive strength. Multivariate Imputation by Chained Equations-Extreme Gradient Boosting (MICE-XGBoost) model achieved the highest accuracy of R = 0.928 (± 0.009). SHAP analysis identified key factors influencing strength, including water-to-cement/binder ratio, and kaolinite content. The local range of each feature showing more significant contributions was also identified. Non-dominated Sorting Genetic Algorithm-II was employed for MOO, generating Pareto fronts to minimize cost and embodied carbon while meeting strength requirements. A minimum balanced reduction in cost by 13.06% and embodied carbon by 14.83% was obtained. Inflection points on Pareto fronts were identified to guide decision-making for low-medium grade mixtures. A table of optimal mix designs is provided, offering practical solutions for selecting sustainable LC formulations.

摘要

石灰石煅烧粘土水泥(LC)是一种很有前景的低碳建筑材料,其机械性能与普通硅酸盐水泥(OPC)相当,但所含碳足迹要小得多。以往文献表明,大规模使用LC可使与OPC生产相关的含碳排放量至少减少30%。本研究提出了一种结合机器学习(ML)和多目标优化(MOO)的混合框架,以设计具有成本效益和环境友好型的LC混合物。构建了一个包含387个LC样本的数据集,用于开发预测抗压强度的ML模型。链式方程-极端梯度提升多变量插补(MICE-XGBoost)模型的准确率最高,R = 0.928(±0.009)。SHAP分析确定了影响强度的关键因素,包括水胶比和高岭土含量。还确定了每个特征显示出更显著贡献的局部范围。采用非支配排序遗传算法-II进行多目标优化,生成帕累托前沿,以在满足强度要求的同时使成本和含碳量最小化。成本最低平衡降低了13.06%,含碳量降低了14.83%。确定了帕累托前沿上的拐点,以指导中低等级混合物的决策。提供了最佳配合比设计表,为选择可持续的LC配方提供了实际解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c77/12215958/52692cbcb403/41598_2025_5288_Fig16_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验