Suppr超能文献

应用机器学习预测生物质废料衍生多孔碳对 CO 的吸附

Applied Machine Learning for Prediction of CO Adsorption on Biomass Waste-Derived Porous Carbons.

机构信息

Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.

R&D Centre, Sun Brand Industrial Inc., Jeollanam-do 57248, Republic of Korea.

出版信息

Environ Sci Technol. 2021 Sep 7;55(17):11925-11936. doi: 10.1021/acs.est.1c01849. Epub 2021 Jul 22.

Abstract

Biomass waste-derived porous carbons (BWDPCs) are a class of complex materials that are widely used in sustainable waste management and carbon capture. However, their diverse textural properties, the presence of various functional groups, and the varied temperatures and pressures to which they are subjected during CO adsorption make it challenging to understand the underlying mechanism of CO adsorption. Here, we compiled a data set including 527 data points collected from peer-reviewed publications and applied machine learning to systematically map CO adsorption as a function of the textural and compositional properties of BWDPCs and adsorption parameters. Various tree-based models were devised, where the gradient boosting decision trees (GBDTs) had the best predictive performance with of 0.98 and 0.84 on the training and test data, respectively. Further, the BWDPCs in the compiled data set were classified into regular porous carbons (RPCs) and heteroatom-doped porous carbons (HDPCs), where again the GBDT model had of 0.99 and 0.98 on the training and 0.86 and 0.79 on the test data for the RPCs and HDPCs, respectively. Feature importance revealed the significance of adsorption parameters, textural properties, and compositional properties in the order of precedence for BWDPC-based CO adsorption, effectively guiding the synthesis of porous carbons for CO adsorption applications.

摘要

生物质废料衍生多孔碳(BWDPC)是一类广泛应用于可持续废物管理和碳捕获的复杂材料。然而,由于其多样的结构特性、存在的各种官能团以及在 CO 吸附过程中所经历的各种温度和压力,使得理解 CO 吸附的基本机制变得具有挑战性。在这里,我们收集了来自同行评议出版物的 527 个数据点,应用机器学习系统地绘制了 CO 吸附与 BWDPC 的结构和组成特性以及吸附参数之间的关系。我们设计了各种基于树的模型,其中梯度提升决策树(GBDT)的预测性能最佳,在训练和测试数据上的分别为 0.98 和 0.84。此外,我们将编译的数据集中的 BWDPC 分为常规多孔碳(RPC)和杂原子掺杂多孔碳(HDPC),在这两种情况下,GBDT 模型在训练和测试数据上的分别为 0.99 和 0.86、0.98 和 0.79。特征重要性揭示了吸附参数、结构特性和组成特性在 BWDPC 基 CO 吸附中的重要性顺序,这有效地指导了用于 CO 吸附应用的多孔碳的合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验