Suppr超能文献

使用机器学习技术对核反应堆中的缺陷簇进行高级分析。

Advanced analysis of defect clusters in nuclear reactors using machine learning techniques.

作者信息

Ren Shuai, Zhang Xinyu, Li Huizhao, Hu Changjun, Chen Dandan

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):22439. doi: 10.1038/s41598-025-05802-7.

Abstract

Studying defects and defect clusters in reactor materials is essential for understanding the degradation mechanisms of materials under irradiation. By uncovering the formation and evolution of defects, this paper provides critical insights for enhancing the radiation resistance of reactor materials and extending their service life. The contributions of this study are as follows: (1) Integration of a large-scale molecular dynamics (MD) dataset generated by cascade collisions and the application of machine learning (ML) techniques to investigate point defects and their clusters in reactor pressure vessel (RPV) materials; (2) Proposal of a novel clustering method based on physical characteristics, enabling efficient classification of defect clusters while effectively reducing data noise; (3) Development of a component-based defect cluster configuration recognition method using a dual-pointer lattice-filling technique, accurately capturing all defects and identifying several cluster morphologies observed in experiments; (4) Demonstration of the algorithm's outstanding performance in handling systems containing millions of atomic coordinates, showcasing its scalability and robustness; (5) Visualization of the three-dimensional spatial distribution of defect clusters and provision of two-dimensional spatial density distribution maps for vacancy clusters and interstitial clusters, offering precise characterization of spatial relationships within defect clusters and new insights into the irradiation mechanisms of materials.

摘要

研究反应堆材料中的缺陷和缺陷簇对于理解材料在辐照下的降解机制至关重要。通过揭示缺陷的形成和演化,本文为提高反应堆材料的抗辐射能力和延长其使用寿命提供了关键见解。本研究的贡献如下:(1)整合由级联碰撞生成的大规模分子动力学(MD)数据集,并应用机器学习(ML)技术研究反应堆压力容器(RPV)材料中的点缺陷及其簇;(2)提出一种基于物理特征的新型聚类方法,能够有效地对缺陷簇进行分类,同时有效降低数据噪声;(3)开发一种基于组件的缺陷簇构型识别方法,使用双指针晶格填充技术,准确捕获所有缺陷并识别实验中观察到的几种簇形态;(4)证明该算法在处理包含数百万个原子坐标的系统时具有出色的性能,展示了其可扩展性和鲁棒性;(5)可视化缺陷簇的三维空间分布,并提供空位簇和间隙簇的二维空间密度分布图,精确表征缺陷簇内的空间关系,并为材料的辐照机制提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdcc/12216015/c9c8b0cce621/41598_2025_5802_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验