Kobayashi Keita, Okumura Masahiko, Nakamura Hiroki, Itakura Mitsuhiro, Machida Masahiko, Cooper Michael W D
CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba, 277-0871, Japan.
Materials Science and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.
Sci Rep. 2022 Jun 13;12(1):9808. doi: 10.1038/s41598-022-13869-9.
Predicting materials properties of nuclear fuel compounds is a challenging task in materials science. Their thermodynamical behaviors around and above the operational temperature are essential for the design of nuclear reactors. However, they are not easy to measure, because the target temperature range is too high to perform various standard experiments safely and accurately. Moreover, theoretical methods such as first-principles calculations also suffer from the computational limitations in calculating thermodynamical properties due to their high calculation-costs and complicated electronic structures stemming from f-orbital occupations of valence electrons in actinide elements. Here, we demonstrate, for the first time, machine-learning molecular-dynamics to theoretically explore high-temperature thermodynamical properties of a nuclear fuel material, thorium dioxide. The target compound satisfies first-principles calculation accuracy because f-electron occupation coincidentally diminishes and the scheme meets sampling sufficiency because it works at the computational cost of classical molecular-dynamics levels. We prepare a set of training data using first-principles molecular dynamics with small number of atoms, which cannot directly evaluate thermodynamical properties but captures essential atomistic dynamics at the high temperature range. Then, we construct a machine-learning molecular-dynamics potential and carry out large-scale molecular-dynamics calculations. Consequently, we successfully access two kinds of thermodynamic phase transitions, namely the melting and the anomalous [Formula: see text] transition induced by large diffusions of oxygen atoms. Furthermore, we quantitatively reproduce various experimental data in the best agreement manner by selecting a density functional scheme known as SCAN. Our results suggest that the present scale-up simulation-scheme using machine-learning techniques opens up a new pathway on theoretical studies of not only nuclear fuel compounds, but also a variety of similar materials that contain both heavy and light elements, like thorium dioxide.
预测核燃料化合物的材料特性是材料科学中的一项具有挑战性的任务。它们在运行温度附近及以上的热力学行为对于核反应堆的设计至关重要。然而,这些行为并不容易测量,因为目标温度范围过高,无法安全、准确地进行各种标准实验。此外,诸如第一性原理计算等理论方法在计算热力学性质时也受到计算限制,这是由于其计算成本高以及锕系元素价电子的f轨道占据导致电子结构复杂。在此,我们首次展示了机器学习分子动力学,以从理论上探索核燃料材料二氧化钍的高温热力学性质。目标化合物满足第一性原理计算精度,因为f电子占据恰好减少,并且该方案满足采样充分性,因为它以经典分子动力学水平的计算成本运行。我们使用含少量原子的第一性原理分子动力学制备了一组训练数据,这些数据不能直接评估热力学性质,但能捕捉高温范围内基本的原子动力学。然后,我们构建了一个机器学习分子动力学势并进行大规模分子动力学计算。结果,我们成功获得了两种热力学相变,即由氧原子的大量扩散引起的熔化和反常的[公式:见正文]相变。此外,我们通过选择一种称为SCAN的密度泛函方案,以最佳吻合的方式定量再现了各种实验数据。我们的结果表明,目前使用机器学习技术的放大模拟方案为不仅核燃料化合物,而且包括二氧化钍等含有重元素和轻元素的各种类似材料的理论研究开辟了一条新途径。