Bak Kwan-Young, Lee Dong-Young, Lee Ju-Seong, Jee Hee-Jung, Park R Jisung, Koo Ja-Yong, Jhong Jae-Hwan
School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, 02844, Korea.
Data Science Center, Sungshin Women's University, Seoul, 02844, Korea.
Sci Rep. 2025 Jul 1;15(1):21958. doi: 10.1038/s41598-025-05779-3.
This study introduces a penalized B-spline approach for estimating smooth curves, incorporating a total variation penalty to balance flexibility and interpretability. By leveraging group penalties and the Alternating Direction Method of Multipliers (ADMM) algorithm, the method ensures consistency across response variables and computational efficiency. We applied this approach to two real-world datasets: oceanographic drifter data in the Niño 4 region and Demoiselle Crane migration data. The fitted trajectories closely captured both large-scale trends and localized variations, demonstrating robustness against noise and irregularly sampled data. This framework is particularly advantageous for analyzing spatiotemporal data, as it effectively removes unnecessary knots and adapts to the complexity of underlying patterns. The total variation penalty controls curve smoothness by penalizing abrupt changes in the estimated function, while the group penalty ensures that all response variables share a consistent set of knots, enhancing interpretability. Although this study focused on two-dimensional spatial trajectories, the methodology is designed for general p-dimensional data and can be extended to three-dimensional datasets, such as avian flight paths or marine animal diving behaviors. Future research could refine the approach by dynamically selecting penalty parameters or expanding its applicability to broader multidimensional settings. This robust and adaptable technique provides a practical tool for analyzing complex spatiotemporal data across various scientific disciplines.
本研究介绍了一种用于估计平滑曲线的惩罚B样条方法,该方法纳入了总变差惩罚以平衡灵活性和可解释性。通过利用组惩罚和交替方向乘子法(ADMM)算法,该方法确保了响应变量之间的一致性和计算效率。我们将此方法应用于两个实际数据集:尼诺4区海洋漂流器数据和蓑羽鹤迁徙数据。拟合轨迹紧密捕捉了大规模趋势和局部变化,证明了对噪声和不规则采样数据的鲁棒性。该框架对于分析时空数据特别有利,因为它有效地去除了不必要的节点并适应了潜在模式的复杂性。总变差惩罚通过惩罚估计函数中的突然变化来控制曲线平滑度,而组惩罚确保所有响应变量共享一组一致的节点,增强了可解释性。尽管本研究专注于二维空间轨迹,但该方法是为一般的p维数据设计的,并且可以扩展到三维数据集,如鸟类飞行路径或海洋动物潜水行为。未来的研究可以通过动态选择惩罚参数或扩大其在更广泛的多维设置中的适用性来改进该方法。这种强大且适应性强的技术为跨各种科学学科分析复杂的时空数据提供了一种实用工具。