Suppr超能文献

一种使用基于默克尔山脉和变压器的深度学习模型的安全认证和等效性认证,用于教育生态系统。

A secured accreditation and equivalency certification using Merkle mountain range and transformer based deep learning model for the education ecosystem.

作者信息

Krishnan Sumathy, Rajendran Surendran, Zakariah Mohammad

机构信息

Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai, 602105, India.

Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, P.O. Box 22459, Riyadh, 11495, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 2;15(1):22511. doi: 10.1038/s41598-025-06789-x.

Abstract

An Accreditation and equivalency certificate Verification System is required to ensure integrity, trust, and recognition of qualifications within the education ecosystem. However, most verification procedures are costly, hard, opaque, and time-consuming. This paper introduces a secured blockchain-based Accreditation and Equivalency certification prototype that effectively mitigates credential and equivalency frauds. Initially, a novel transformer-based convolutional recurrent network (TCRN) is proposed to automate and enhance the equivalency estimation process by analyzing large datasets of educational records and providing equivalence certificates. TCRN employs Bi-GRU to retain long-term academic trends, Depth-wise separable convolutions (DSC) to concentrate on course-specific information, and BERT to capture global semantic context. The suggested approach utilizes an enhanced MD5 hash method to uniquely fingerprint Degree Details (DD), ID/Transcript Details (ITD), and equivalency certificates, storing them in a Merkle Mountain Range (MMR) structure to ensure data integrity. Verification of credentials is made easier as third parties can now access and verify data using QR codes incorporated in physical certificates through the Cerberus + + network. Cerberus + + uses a sampling-based strategy to reduce resource usage throughout the verification process and improves conventional blockchain architecture for increased computing efficiency. The proposed platform sets a globally reliable foundation for comparability of the grading scale of higher education and ensures easy transfer and recognition of academic credentials. According to simulation results, the system can estimate academic equivalency with over 95% accuracy and allows for resource-efficient, real-time verification.

摘要

需要一个认证和等效证书验证系统,以确保教育生态系统中资格的完整性、可信度和认可度。然而,大多数验证程序成本高昂、难度大、不透明且耗时。本文介绍了一种基于区块链的安全认证和等效证书原型,可有效减轻证书和等效性欺诈。首先,提出了一种新颖的基于Transformer的卷积循环网络(TCRN),通过分析大量教育记录数据集并提供等效证书,实现等效性估计过程的自动化并加以增强。TCRN采用双向门控循环单元(Bi-GRU)来保留长期学术趋势,深度可分离卷积(DSC)来专注于特定课程信息,以及BERT来捕捉全局语义上下文。所建议的方法利用增强的MD5哈希方法为学位详情(DD)、身份证/成绩单详情(ITD)和等效证书生成唯一指纹,将它们存储在默克尔山脉(MMR)结构中以确保数据完整性。由于第三方现在可以通过Cerberus ++网络使用实体证书中包含的二维码访问和验证数据,证书验证变得更加容易。Cerberus ++使用基于采样的策略来减少整个验证过程中的资源使用,并改进传统区块链架构以提高计算效率。所提出的平台为高等教育评分标准的可比性奠定了全球可靠的基础,并确保学术证书的轻松转移和认可。根据模拟结果,该系统可以以超过95%的准确率估计学术等效性,并允许进行资源高效的实时验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验