Zhang Xiao, Lin Zihan, Wang Liguo, Chu Yong S, Yang Yang, Xiao Xianghui, Lin Yuewei, Liu Qun
Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
LBMS, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Commun Biol. 2025 Jul 1;8(1):962. doi: 10.1038/s42003-025-08397-x.
Segmentation of three-dimensional (3D) cellular images is fundamental for studying and understanding cell structure and function. However, 3D cellular segmentation is challenging, particularly for dense cells and tissues. This challenge arises mainly from the complex contextual information within 3D images, anisotropic properties, and the sensitivity to internal cellular structures, which often lead to incorrect segmentation. In this work, we introduce SwinCell, a 3D transformer-based framework that leverages Swin-transformer to predict flow and differentiate individual cell instances. We demonstrate SwinCell's utility in the segmentation of nuclei, colon tissue cells, and densely cultured cells. SwinCell strikes a balance between maintaining detailed local feature recognition and understanding broader contextual information. Through extensive testing with both public and in-house 3D cell imaging datasets, SwinCell shows utility in segmenting dense cells, making it a valuable tool for 3D segmentation in cellular analysis that could expedite research in cell biology and tissue engineering.
三维(3D)细胞图像分割是研究和理解细胞结构与功能的基础。然而,3D细胞分割具有挑战性,尤其是对于密集的细胞和组织。这一挑战主要源于3D图像中复杂的上下文信息、各向异性特性以及对细胞内部结构的敏感性,这些因素常常导致分割错误。在这项工作中,我们引入了SwinCell,这是一个基于3D变换器的框架,它利用Swin变换器来预测流并区分单个细胞实例。我们展示了SwinCell在细胞核、结肠组织细胞和密集培养细胞分割中的效用。SwinCell在保持详细的局部特征识别和理解更广泛的上下文信息之间取得了平衡。通过对公共和内部3D细胞成像数据集进行广泛测试,SwinCell在分割密集细胞方面显示出效用,使其成为细胞分析中3D分割的一个有价值的工具,能够加快细胞生物学和组织工程的研究。