Prompook Temsiri, Jittanon Sorawut, Phumeesut Kandanai, Termritthikun Chakkrit, Ketjoy Nipon, Chamsa-Ard Wisut, Meesuk Noppakun, Madtharad Chakphed, Suriwong Tawat
School of Renewable Energy and Smart Grid Technology, Naresuan University, Phitsanulok, 65000, Thailand.
Provincial Electricity Authority (PEA) of Thailand, Bangkok, 10900, Thailand.
Sci Rep. 2025 Jul 1;15(1):21123. doi: 10.1038/s41598-025-07475-8.
To address the challenges of increasing electricity demand and diverse consumption behavior, this study explored an adaptive K-means clustering approach for segmenting 24-h load profiles from 627 distributed substations of the Provincial Electricity Authority (PEA) in Thailand. Euclidean distance and Cosine similarity were applied as distance measures, with cluster numbers (K) ranging from 2 to 10. Clustering validity was evaluated using the Davies-Bouldin Index (DBI), Calinski-Harabasz Index (CHI), and Silhouette Coefficient (SC), alongside three proposed metrics: Averaged Standard Deviation (ASD), Standard Deviation of Derived Slope (SDDS), and Absolute Different Area (ADA). Euclidean distance was found to be more effective in clustering load profiles based on the magnitude of electricity consumption, while Cosine similarity better captured the shape and temporal patterns of usage, as supported by the proposed metrics. Optimal clustering for the distributed substations of PEA was achieved with K equal to 3 or 4, balancing simplicity and detail. The spatial distribution of substation clusters across different regions in Thailand revealed distinct energy consumption patterns linked to customer sectors. These findings provide valuable insights for electricity management strategies, distribution grid infrastructure planning, and future energy policy development in Thailand.
为应对电力需求不断增长和消费行为多样化的挑战,本研究探索了一种自适应K均值聚类方法,用于对泰国电力局(PEA)627个分布式变电站的24小时负荷曲线进行分段。采用欧几里得距离和余弦相似度作为距离度量,聚类数(K)范围为2至10。使用戴维斯-布尔丁指数(DBI)、卡林斯基-哈拉巴斯指数(CHI)和轮廓系数(SC),以及三个提出的度量指标:平均标准差(ASD)、导出斜率标准差(SDDS)和绝对差异面积(ADA)来评估聚类有效性。研究发现,基于电力消耗的大小,欧几里得距离在负荷曲线聚类中更有效,而余弦相似度能更好地捕捉使用的形状和时间模式,这得到了所提出的度量指标的支持。PEA分布式变电站的最优聚类在K等于3或4时实现,兼顾了简单性和细节性。泰国不同地区变电站聚类的空间分布揭示了与客户部门相关的不同能源消费模式。这些发现为泰国的电力管理策略、配电网基础设施规划和未来能源政策制定提供了有价值的见解。