Drobnič Tina, Cohen Eli J, Calcraft Thomas, Alzheimer Mona, Froschauer Kathrin, Svensson Sarah, Hoffman William H, Singh Nanki, Garg Sriram G, Henderson Louie D, Umrekar Trishant R, Nans Andrea, Ribardo Deborah, Pedaci Francesco, Nord Ashley L, Hochberg Georg K A, Hendrixson David R, Sharma Cynthia M, Rosenthal Peter B, Beeby Morgan
Department of Life Sciences, Imperial College London, London, UK.
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
Nat Microbiol. 2025 Jul;10(7):1723-1740. doi: 10.1038/s41564-025-02012-9. Epub 2025 Jul 1.
The bacterial flagellar motor, which spins a helical propeller for propulsion, has undergone evolutionary diversification across bacterial species, often involving the addition of structures associated with increasing torque for motility in viscous environments. Understanding how such structures function and have evolved is hampered by challenges in visualizing motors in situ. Here we developed a Campylobacter jejuni minicell system for in situ cryogenic electron microscopy imaging and single-particle analysis of its motor, one of the most complex flagellar motors known, to subnanometre resolution. Focusing on the large periplasmic structures which are essential for increasing torque, our structural data, interpreted with molecular models, show that the basal disk comprises concentric rings of FlgP. The medial disk is a lattice of PflC with PflD, while the proximal disk is a rim of PflB attached to spokes of PflA. PflAB dimerization is essential for proximal disk assembly, recruiting FliL to scaffold more stator complexes at a wider radius which increases torque. We also acquired insights into universal principles of flagellar torque generation. This in situ approach is broadly applicable to other membrane-residing bacterial molecular machines.
细菌鞭毛马达能旋转螺旋桨以实现推进,在不同细菌物种中经历了进化多样化,通常涉及添加与在粘性环境中增加运动扭矩相关的结构。由于难以对原位马达进行可视化,了解这些结构如何发挥功能以及如何进化受到了阻碍。在这里,我们开发了一种空肠弯曲菌小细胞系统,用于对其马达进行原位低温电子显微镜成像和单颗粒分析,该马达是已知最复杂的鞭毛马达之一,分辨率可达亚纳米级。聚焦于增加扭矩所必需的大型周质结构,我们结合分子模型解读的结构数据表明,基盘由FlgP的同心环组成。中间盘是由PflC和PflD构成的晶格,而近端盘是附着在PflA辐条上的PflB边缘。PflAB二聚化对于近端盘组装至关重要,它能招募FliL在更大半径处搭建更多定子复合体,从而增加扭矩。我们还深入了解了鞭毛扭矩产生的通用原理。这种原位方法广泛适用于其他驻膜细菌分子机器。