文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过物理信息和偏好对齐生成基础模型进行的计算机模拟3D分子编辑。

In-silico 3D molecular editing through physics-informed and preference-aligned generative foundation models.

作者信息

Lin Xiaohan, Xia Yijie, Li Yanheng, Huang Yu-Peng, Liu Shuo, Zhang Jun, Gao Yi Qin

机构信息

New Cornerstone Science Laboratory, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.

School of Pharmacy, Lanzhou University, Lanzhou, China.

出版信息

Nat Commun. 2025 Jul 1;16(1):6043. doi: 10.1038/s41467-025-61323-x.


DOI:10.1038/s41467-025-61323-x
PMID:40595603
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12217601/
Abstract

Generating molecular structures towards desired properties is a critical task in computer-aided drug and material design. As special 3D entities, molecules inherit non-trivial physical complexity, and many intrinsic properties may not be learnable through pure data-driven approaches, hindering the transaction of powerful generative artificial intelligence (GenAI) to this field. To avoid existing molecular GenAI's heavy reliance on domain-specific models and priors, in this research, we derive theoretical guidelines to bridge the methodological gap between GenAI for images and molecules, allowing pre-training of foundation models for 3D molecular generation. Difficulties due to symmetry, stability and entropy, which are critical for molecules, are overcome through a simple and model-agnostic training protocol. Moreover, we apply physics-informed strategies to force MolEdit, a pre-trained multimodal molecular GenAI, to obey physics laws and align with contextual preferences, and thus suppress undesired model hallucinations. MolEdit can generate valid molecules with comprehensive symmetry, strikes a better balance between configuration stability and conformer diversity, and supports complicated 3D scaffolds which frustrate other methods. Furthermore, MolEdit is applicable for zero-shot lead optimization and linker design following contextual and geometrical specifications. Collectively, as a foundation model, MolEdit offers flexibility and developability for AI-aided editing and manipulation of molecules serving various purposes.

摘要

生成具有所需特性的分子结构是计算机辅助药物和材料设计中的一项关键任务。作为特殊的三维实体,分子具有不平凡的物理复杂性,许多内在特性可能无法通过纯数据驱动的方法来学习,这阻碍了强大的生成式人工智能(GenAI)在该领域的应用。为了避免现有的分子GenAI严重依赖特定领域的模型和先验知识,在本研究中,我们推导了理论指导方针,以弥合图像和分子的GenAI之间的方法差距,从而实现用于三维分子生成的基础模型的预训练。通过一个简单且与模型无关的训练协议,克服了分子所特有的对称性、稳定性和熵带来的困难。此外,我们应用物理知识指导的策略,迫使预训练的多模态分子GenAI——MolEdit遵守物理定律并符合上下文偏好,从而抑制不期望的模型幻觉。MolEdit可以生成具有全面对称性的有效分子,在构型稳定性和构象多样性之间取得更好的平衡,并支持使其他方法受挫的复杂三维支架结构。此外,MolEdit适用于根据上下文和几何规范进行零样本先导优化和连接子设计。总的来说,作为一个基础模型,MolEdit为人工智能辅助的各种分子编辑和操作提供了灵活性和可开发性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/ca9b74914dd1/41467_2025_61323_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/0167702b39e2/41467_2025_61323_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/c37df08ad901/41467_2025_61323_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/8c10e0a53057/41467_2025_61323_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/59bcd051e65d/41467_2025_61323_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/793d965f85ac/41467_2025_61323_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/ca9b74914dd1/41467_2025_61323_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/0167702b39e2/41467_2025_61323_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/c37df08ad901/41467_2025_61323_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/8c10e0a53057/41467_2025_61323_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/59bcd051e65d/41467_2025_61323_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/793d965f85ac/41467_2025_61323_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474a/12217601/ca9b74914dd1/41467_2025_61323_Fig6_HTML.jpg

相似文献

[1]
In-silico 3D molecular editing through physics-informed and preference-aligned generative foundation models.

Nat Commun. 2025-7-1

[2]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[3]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[4]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[5]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[6]
Factors that influence parents' and informal caregivers' views and practices regarding routine childhood vaccination: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2021-10-27

[7]
Carbon dioxide detection for diagnosis of inadvertent respiratory tract placement of enterogastric tubes in children.

Cochrane Database Syst Rev. 2025-2-19

[8]
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.

J Psychiatr Ment Health Nurs. 2024-8

[9]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[10]
Conceptual framework and systematic review of the effects of participants' and professionals' preferences in randomised controlled trials.

Health Technol Assess. 2005-9

本文引用的文献

[1]
Computer-aided drug design to generate a unique antibiotic family.

Nat Commun. 2024-9-27

[2]
Accurate computation of quantum excited states with neural networks.

Science. 2024-8-23

[3]
A Euclidean transformer for fast and stable machine learned force fields.

Nat Commun. 2024-8-6

[4]
Fully Flexible Molecular Alignment Enables Accurate Ligand Structure Modeling.

J Chem Inf Model. 2024-8-12

[5]
Detecting hallucinations in large language models using semantic entropy.

Nature. 2024-6

[6]
AlphaFold2 structures guide prospective ligand discovery.

Science. 2024-6-21

[7]
Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature. 2024-6

[8]
Cryo-EM structures reveal two allosteric inhibition modes of PI3Kα involving a re-shaping of the activation loop.

Structure. 2024-7-11

[9]
A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets.

Nat Commun. 2024-3-26

[10]
Discovery of Pyridopyrimidinones that Selectively Inhibit the H1047R PI3Kα Mutant Protein.

J Med Chem. 2024-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索