Suppr超能文献

一种用于快速稳定机器学习力场的欧几里得变换器。

A Euclidean transformer for fast and stable machine learned force fields.

作者信息

Frank J Thorben, Unke Oliver T, Müller Klaus-Robert, Chmiela Stefan

机构信息

Machine Learning Group, TU Berlin, Berlin, Germany.

BIFOLD, Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.

出版信息

Nat Commun. 2024 Aug 6;15(1):6539. doi: 10.1038/s41467-024-50620-6.

Abstract

Recent years have seen vast progress in the development of machine learned force fields (MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the reliability of MLFFs in molecular dynamics (MD) simulations is facing growing scrutiny due to concerns about instability over extended simulation timescales. Our findings suggest a potential connection between robustness to cumulative inaccuracies and the use of equivariant representations in MLFFs, but the computational cost associated with these representations can limit this advantage in practice. To address this, we propose a transformer architecture called SO3KRATES that combines sparse equivariant representations (Euclidean variables) with a self-attention mechanism that separates invariant and equivariant information, eliminating the need for expensive tensor products. SO3KRATES achieves a unique combination of accuracy, stability, and speed that enables insightful analysis of quantum properties of matter on extended time and system size scales. To showcase this capability, we generate stable MD trajectories for flexible peptides and supra-molecular structures with hundreds of atoms. Furthermore, we investigate the PES topology for medium-sized chainlike molecules (e.g., small peptides) by exploring thousands of minima. Remarkably, SO3KRATES demonstrates the ability to strike a balance between the conflicting demands of stability and the emergence of new minimum-energy conformations beyond the training data, which is crucial for realistic exploration tasks in the field of biochemistry.

摘要

近年来,基于从头算参考计算的机器学习力场(MLFFs)取得了巨大进展。尽管测试误差较低,但由于担心在扩展的模拟时间尺度上的不稳定性,MLFFs在分子动力学(MD)模拟中的可靠性正面临越来越多的审查。我们的研究结果表明,对累积误差的鲁棒性与MLFFs中等变表示的使用之间存在潜在联系,但与这些表示相关的计算成本可能会在实际应用中限制这一优势。为了解决这个问题,我们提出了一种名为SO3KRATES的变压器架构,它将稀疏等变表示(欧几里得变量)与一种自注意力机制相结合,该机制可以分离不变和等变信息,从而无需昂贵的张量积。SO3KRATES实现了准确性、稳定性和速度的独特组合,能够在扩展的时间和系统大小尺度上对物质的量子性质进行有洞察力的分析。为了展示这种能力,我们为具有数百个原子的柔性肽和超分子结构生成了稳定的MD轨迹。此外,我们通过探索数千个最小值来研究中等大小链状分子(例如小肽)的势能面拓扑。值得注意的是,SO3KRATES展示了在稳定性与超出训练数据的新的最低能量构象的出现这两个相互冲突的要求之间取得平衡的能力,这对于生物化学领域的实际探索任务至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef8/11303804/de72057bed88/41467_2024_50620_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验