Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
Center for Molecular Quantum Transduction, Northwestern University, Evanston, IL, 60208, USA.
Nat Commun. 2023 Feb 15;14(1):848. doi: 10.1038/s41467-023-36031-z.
Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.
固态系统中的电子自旋有望实现基于自旋的信息处理设备。单壁碳纳米管(SWCNT)是一种全碳一维材料,其无自旋环境和弱自旋轨道耦合保证了长自旋相干时间,为扩展功能提供了比体系统更多的自由度。限制 SWCNT 中自旋量子位实现的一个关键要求是对孤立自旋进行有纪律的限制。在这里,我们通过自下而上的方法报告了在 SWCNT 中创建高度受限的电子自旋。这些电子自旋量子位的记录长相干时间 8.2 μs 和自旋晶格弛豫时间 13 ms 允许演示量子控制操作,表现为拉比振荡。对退相干机制的研究揭示了数十毫秒的固有相干时间。这些发现表明,将分子方法与无机晶体系统相结合,为可重复和可扩展的量子材料提供了一种强大的途径,适用于量子位应用。