Suppr超能文献

基于长链非编码RNA的竞争性内源RNA网络特征识别,以建立胃癌预后模型并探索潜在治疗靶点

Identification of a LncRNA based CeRNA network signature to establish a prognostic model and explore potential therapeutic targets in gastric cancer.

作者信息

An Yuanqing, Liu Xiaomeng, Liu Jin, Wang Deqiang, Yan Wenying, Hu Guang, Xu Lu, Li Wei

机构信息

Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.

Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20891. doi: 10.1038/s41598-025-05105-x.

Abstract

Numerous studies have demonstrated that long non-coding RNA (lncRNA) play critical roles in regulating physiological processes and contributing to pathological diseases. This study aimed to develop lncRNA-based signatures to predict the prognostic risk of gastric cancer (GC) patients and provide therapeutic guidance. Gene expression profiles and clinical information were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed RNAs, including lncRNA, miRNA, and mRNA, in cancerous and adjacent non-cancerous tissues were analyzed using Weighted correlation network analysis (WGCNA) and construction of a lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network. Then, a lncRNA-based risk model was constructed by Cox regression and Lasso regression analyses. A ceRNA network comprising 235 lncRNAs, 60 miRNAs, and 52 mRNAs was identified. Based on the expression of five lncRNAs (including AC010333.1, LINC01579, AP000695.2, LINC00922 and AL121772.1) screened from the ceRNA network, a lncRNA-based risk model was developed, which effectively predict the prognosis of GC patients. The expression of AP000695.2 was significantly associated with poor prognosis and higher T stage. The knockdown of AP000695.2 inhibited the growth of GC cells both in vitro and in vivo. Transfection with miR-144-3p and miR-7-5p mimics attenuate the up-regulation of targets genes, including CDH11, COL5A2, COL12A1, and VCAN, which was induced by AP000695.2, suggesting a ceRNA mechanism. Additionally, elevated VCAN expression was correlated with poorer survival and a reduced response to anti-PD-1 immune checkpoint inhibitor treatment of GC. This study established a lncRNA-based risk model for predicting the prognosis of GC patients and identified a ceRNA mechanism involving AP000695.2-miR-144-3p-VCAN, presenting novel biomarkers and therapeutic targets for GC treatment.

摘要

众多研究表明,长链非编码RNA(lncRNA)在调节生理过程及引发病理疾病中发挥着关键作用。本研究旨在开发基于lncRNA的特征来预测胃癌(GC)患者的预后风险并提供治疗指导。基因表达谱和临床信息取自癌症基因组图谱(TCGA)数据库。使用加权基因共表达网络分析(WGCNA)并构建lncRNA- miRNA- mRNA竞争性内源RNA(ceRNA)网络,分析癌组织和癌旁非癌组织中差异表达的RNA,包括lncRNA、miRNA和mRNA。然后,通过Cox回归和Lasso回归分析构建基于lncRNA的风险模型。鉴定出一个由235个lncRNA、60个miRNA和52个mRNA组成的ceRNA网络。基于从ceRNA网络中筛选出的5个lncRNA(包括AC010333.1、LINC01579、AP000695.2、LINC00922和AL121772.1)的表达,开发了一种基于lncRNA的风险模型,该模型能有效预测GC患者的预后。AP000695.2的表达与预后不良和较高的T分期显著相关。敲低AP000695.2可在体外和体内抑制GC细胞的生长。用miR-144-3p和miR-7-5p模拟物转染可减弱由AP000695.2诱导的包括CDH11、COL5A2、COL12A1和VCAN在内的靶基因的上调,提示存在ceRNA机制。此外,VCAN表达升高与较差的生存率以及GC患者对抗PD-1免疫检查点抑制剂治疗的反应降低相关。本研究建立了一种基于lncRNA的风险模型来预测GC患者的预后,并鉴定出一种涉及AP000695.2- miR-144-3p- VCAN的ceRNA机制,为GC治疗提供了新的生物标志物和治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5669/12219596/323b882fb975/41598_2025_5105_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验