探索轻量级大语言模型在基于人工智能的心理健康咨询任务中的潜力:一项新颖的比较研究。
Exploring the potential of lightweight large language models for AI-based mental health counselling task: a novel comparative study.
作者信息
Maurya Ritesh, Rajput Nikhil, Diviit M G, Mahapatra Satyajit, Ojha Manish Kumar
机构信息
Department of Computer Science and Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, India.
Department of Artificial Intelligence, Amity University, Noida, 201303, India.
出版信息
Sci Rep. 2025 Jul 2;15(1):22463. doi: 10.1038/s41598-025-05012-1.
In recent years, Transformer-based large language models (LLMs) have significantly improved upon their text generation capability. Mental health is a serious concern that can be addressed using LLM-based automated mental health counselors. These systems can provide empathetic responses to individuals in need while considering the negative beliefs, stigma, and taboos associated with mental health issues. Considering the large size of these LLMs makes it difficult to deploy these automated counselors on low cost/resource devices such as edge devices. Therefore, the motivation of the present study to analyze the effectiveness of lightweight LLMs in the development of automated mental health counseling systems. In this study, lightweight open source LLMs such as Google's T5 (small variant), BART (base variant), FLAN-T5 (small variant), and Microsoft's GODEL (base variant) have been fine-tuned for automated mental health counseling task utilizing a diverse set of datasets publicly available online. The experimental results reveal that BART's base variant outperformed the other models across all key metrics such as ROUGE-1, ROUGE-2, ROUGE-L, and BLEU with scores of 0.4727, 0.2665, 0.3554, and 25.3993 respectively. In comparison to other models, BART-base model generated empathetic, and emotionally supportive responses. These findings highlight the potential of lightweight LLMs (small size LLMs), in advancing the field of LLM-based mental health counseling solutions and underscore the need for exploration of lightweight LLMs for this mental health counseling use case. The code for this work is available at the following link: https://github.com/diviitmg03/Comparative-analysis-of-LLMs-.git .
近年来,基于Transformer的大语言模型(LLMs)在文本生成能力方面有了显著提升。心理健康是一个严重问题,可以通过基于大语言模型的自动化心理健康咨询服务来解决。这些系统能够在考虑到与心理健康问题相关的负面信念、污名和禁忌的同时,为有需要的个人提供共情回应。鉴于这些大语言模型规模庞大,难以在低成本/资源设备(如边缘设备)上部署这些自动化咨询服务。因此,本研究旨在分析轻量级大语言模型在自动化心理健康咨询系统开发中的有效性。在本研究中,诸如谷歌的T5(小变体)、BART(基础变体)、FLAN-T5(小变体)以及微软的GODEL(基础变体)等轻量级开源大语言模型,已利用在线公开可用的各种数据集针对自动化心理健康咨询任务进行了微调。实验结果表明,BART的基础变体在所有关键指标(如ROUGE-1、ROUGE-2、ROUGE-L和BLEU)上均优于其他模型,得分分别为0.4727、0.2665、0.3554和25.3993。与其他模型相比,BART基础模型生成了共情且情感支持性的回应。这些发现凸显了轻量级大语言模型(小尺寸大语言模型)在推进基于大语言模型的心理健康咨询解决方案领域的潜力,并强调了针对此心理健康咨询用例探索轻量级大语言模型的必要性。这项工作的代码可在以下链接获取:https://github.com/diviitmg03/Comparative-analysis-of-LLMs-.git 。
相似文献
J Med Internet Res. 2025-6-4
J Biomed Inform. 2025-8
Quant Imaging Med Surg. 2025-6-6
引用本文的文献
Biomedicines. 2025-7-28
本文引用的文献
Lancet Digit Health. 2025-4
NPJ Digit Med. 2023-11-16
Curr Opin Psychol. 2020-12