Suppr超能文献

利用人工智能解码免疫缺陷:精准医学的新时代。

Decoding Immunodeficiencies with Artificial Intelligence: A New Era of Precision Medicine.

作者信息

Sciaccotta Raffaele, Barone Paola, Murdaca Giuseppe, Fazio Manlio, Stagno Fabio, Gangemi Sebastiano, Genovese Sara, Allegra Alessandro

机构信息

Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy.

Department of Internal Medicine, University of Genova, 16126 Genova, Italy.

出版信息

Biomedicines. 2025 Jul 28;13(8):1836. doi: 10.3390/biomedicines13081836.

Abstract

Primary and secondary immunodeficiencies comprise a wide array of illnesses marked by immune system abnormalities, resulting in heightened vulnerability to infections, autoimmunity, and cancers. Notwithstanding progress in diagnostic instruments and an enhanced comprehension of the underlying pathophysiology, delayed diagnosis and underreporting persist as considerable obstacles. The implementation of artificial intelligence into clinical practice has surfaced as a viable method to enhance early detection, risk assessment, and management of immunodeficiencies. Recent advancements illustrate how artificial intelligence-driven models, such as predictive algorithms, electronic phenotyping, and automated flow cytometry analysis, might enable early diagnosis, minimize diagnostic delays, and enhance personalized treatment methods. Furthermore, artificial intelligence-driven immunopeptidomics and phenotypic categorization are enhancing vaccine development and biomarker identification. Successful implementation necessitates overcoming problems associated with data standardization, model validation, and ethical issues. Future advancements will necessitate a multidisciplinary partnership among physicians, data scientists, and governments to effectively use the revolutionary capabilities of artificial intelligence, therefore ushering in an age of precision medicine in immunodeficiencies.

摘要

原发性和继发性免疫缺陷包括一系列以免疫系统异常为特征的疾病,导致对感染、自身免疫和癌症的易感性增加。尽管诊断工具有所进步,对潜在病理生理学的理解也有所增强,但诊断延迟和报告不足仍然是相当大的障碍。将人工智能应用于临床实践已成为一种可行的方法,可提高免疫缺陷的早期检测、风险评估和管理。最近的进展表明,人工智能驱动的模型,如预测算法、电子表型分析和自动流式细胞术分析,如何能够实现早期诊断、减少诊断延迟并改进个性化治疗方法。此外,人工智能驱动的免疫肽组学和表型分类正在推动疫苗开发和生物标志物识别。成功实施需要克服与数据标准化、模型验证和伦理问题相关的难题。未来的进展将需要医生、数据科学家和政府之间的多学科合作,以有效利用人工智能的变革能力,从而开创免疫缺陷精准医学的时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79fb/12383788/0b557fa2225d/biomedicines-13-01836-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验