Yue Yang, Adhab Ayat Hussein, Sur Dharmesh, Menon Soumya V, Singh Abhayveer, Supriya S, Mishra Shakti Bedanta, Nathiya Deepak, Mahdi Morug Salih, Mansoor Aseel Salah, Radi Usama Kadem, Abd Nasr Saadoun, Alam Mohammad Mahtab, Herati Khaled
School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
State Energy Group, Ningxia Coal Capital Construction Co., LTD, Yinchuan, 750000, China.
Sci Rep. 2025 Jul 2;15(1):22544. doi: 10.1038/s41598-025-06005-w.
This study examines the adsorption behavior of hydroquinone (HQ) on quartz and sandstone surfaces under various thermal conditions. Adsorption isotherms, including the Langmuir, Freundlich, Temkin, and linear models, were applied to experimental data to predict adsorption capacity and understand underlying mechanisms. Among these, the Langmuir model, characterized by high R (0.999), demonstrated superior accuracy, confirming monolayer adsorption on a homogeneous surface, with a maximum adsorption capacity (q) of 47.1 mg/g at 25 °C. Thermodynamic analysis revealed the exothermic nature of adsorption, with negative Gibbs free energy (ΔG) values across all tested temperatures, indicating spontaneous behavior. However, the adsorption capacity decreased significantly with temperature, from 47.1 mg/g at 25 °C to 27.1 mg/g at 80 °C, due to increased molecular motion and reduced HQ-quartz surface interactions. Furthermore, adsorption experiments in porous sandstone media showed lower adsorption capacities, attributed to the heterogeneity of the sandstone structure and restricted accessibility of active sites, with values decreasing from 24 mg/g at 25 °C to 14 mg/g at 95 °C. Thermodynamic constants such as enthalpy (ΔH = - 8,018 J/mol) and entropy (ΔS = 6.12 J/mol·K) emphasize the temperature dependence of the process. These findings provide crucial insights for designing efficient chemical injection strategies in subsurface environments, bridging the gap between laboratory conditions and real-world applications in reservoir engineering.
本研究考察了对苯二酚(HQ)在不同热条件下在石英和砂岩表面的吸附行为。将包括朗缪尔、弗伦德利希、坦金和线性模型在内的吸附等温线应用于实验数据,以预测吸附容量并理解潜在机制。其中,朗缪尔模型的R值较高(0.999),显示出卓越的准确性,证实了在均匀表面上的单层吸附,在25℃时最大吸附容量(q)为47.1mg/g。热力学分析揭示了吸附的放热性质,在所有测试温度下吉布斯自由能(ΔG)值均为负,表明吸附是自发进行的。然而,由于分子运动加剧以及HQ与石英表面相互作用减弱,吸附容量随温度显著降低,从25℃时的47.1mg/g降至80℃时的27.1mg/g。此外,在多孔砂岩介质中的吸附实验显示吸附容量较低,这归因于砂岩结构的不均匀性以及活性位点的可及性受限,其值从25℃时的24mg/g降至95℃时的14mg/g。焓(ΔH = - 8,018J/mol)和熵(ΔS = 6.12J/mol·K)等热力学常数强调了该过程对温度的依赖性。这些发现为在地下环境中设计高效化学注入策略提供了关键见解,弥合了实验室条件与油藏工程实际应用之间的差距。