Suppr超能文献

一种用于在风电和电动汽车引发的不确定性下提高电力系统可靠性的优化需求响应框架。

An optimized demand response framework for enhancing power system reliability under wind power and EV-induced uncertainty.

作者信息

Pakbin Hadi, Karimi Amin, Hassanzadeh Mohammad Naseh

机构信息

Department of Electrical Engineering, Islamic Azad University, Sanandaj, Iran.

出版信息

Sci Rep. 2025 Jul 1;15(1):21636. doi: 10.1038/s41598-025-05482-3.

Abstract

The growing integration of wind energy and electric vehicles (EVs) introduces significant uncertainty and operational complexity to modern power systems. To address these challenges, this paper presents a novel and optimized demand response (DR) framework designed to enhance system reliability while accounting for wind generation variability and the flexible nature of EV loads. The proposed method incorporates a real-time uncertainty model using a statistical mean-standard deviation relationship to dynamically quantify wind power fluctuations. This modeling approach enables the allocation of DR incentives to be adjusted hour-by-hour based on wind volatility, demand elasticity, and EV charging patterns. Additionally, the framework evaluates system reliability through a well-being-based probabilistic assessment, distinguishing between healthy (P(H)), marginal (P(M)), and risk (P(R)) states. The innovation of this study lies in the integration of uncertainty-driven DR optimization with a probabilistic well-being assessment, allowing DR incentives to be adaptively tuned to real-time wind fluctuations-a capability not addressed in existing literature. This approach provides a practical pathway to managing the variability of renewables without over-reliance on costly storage or backup generation. The model is validated on the IEEE RTS-24 bus system under 12 EV penetration and charging scenarios. Results show that the proposed framework improves P(H) from 95.1% (no DR) and 97.2% (non-optimized DR) to 97.44%, reduces unsupplied energy from 52,230 to 51,900 MWh, and lowers DR incentive costs by 5.6%. These findings demonstrate the framework's capability to enhance cost-efficiency and system resilience in renewable-rich, EV-integrated power grids.

摘要

风能与电动汽车(EV)的日益融合给现代电力系统带来了巨大的不确定性和运行复杂性。为应对这些挑战,本文提出了一种新颖且优化的需求响应(DR)框架,旨在提高系统可靠性,同时考虑风力发电的波动性和电动汽车负荷的灵活性。所提出的方法采用统计均值 - 标准差关系纳入实时不确定性模型,以动态量化风电波动。这种建模方法能够根据风力波动性、需求弹性和电动汽车充电模式逐小时调整DR激励的分配。此外,该框架通过基于福祉的概率评估来评估系统可靠性,区分健康(P(H))、边缘(P(M))和风险(P(R))状态。本研究的创新之处在于将不确定性驱动的DR优化与概率福祉评估相结合,使DR激励能够根据实时风电波动进行自适应调整——这一能力在现有文献中尚未涉及。这种方法为管理可再生能源的波动性提供了一条切实可行的途径,而无需过度依赖昂贵的储能或备用发电。该模型在IEEE RTS - 24节点系统的12种电动汽车渗透率和充电场景下进行了验证。结果表明,所提出的框架将P(H)从95.1%(无DR)和97.2%(非优化DR)提高到97.44%,将未供应能量从52,230兆瓦时减少到51,900兆瓦时,并将DR激励成本降低了5.6%。这些发现证明了该框架在可再生能源丰富、电动汽车集成的电网中提高成本效率和系统弹性的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b387/12219640/d066ebb35633/41598_2025_5482_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验