Pakbin Hadi, Karimi Amin, Hassanzadeh Mohammad Naseh
Department of Electrical Engineering, Islamic Azad University, Sanandaj, Iran.
Sci Rep. 2025 Jul 1;15(1):21636. doi: 10.1038/s41598-025-05482-3.
The growing integration of wind energy and electric vehicles (EVs) introduces significant uncertainty and operational complexity to modern power systems. To address these challenges, this paper presents a novel and optimized demand response (DR) framework designed to enhance system reliability while accounting for wind generation variability and the flexible nature of EV loads. The proposed method incorporates a real-time uncertainty model using a statistical mean-standard deviation relationship to dynamically quantify wind power fluctuations. This modeling approach enables the allocation of DR incentives to be adjusted hour-by-hour based on wind volatility, demand elasticity, and EV charging patterns. Additionally, the framework evaluates system reliability through a well-being-based probabilistic assessment, distinguishing between healthy (P(H)), marginal (P(M)), and risk (P(R)) states. The innovation of this study lies in the integration of uncertainty-driven DR optimization with a probabilistic well-being assessment, allowing DR incentives to be adaptively tuned to real-time wind fluctuations-a capability not addressed in existing literature. This approach provides a practical pathway to managing the variability of renewables without over-reliance on costly storage or backup generation. The model is validated on the IEEE RTS-24 bus system under 12 EV penetration and charging scenarios. Results show that the proposed framework improves P(H) from 95.1% (no DR) and 97.2% (non-optimized DR) to 97.44%, reduces unsupplied energy from 52,230 to 51,900 MWh, and lowers DR incentive costs by 5.6%. These findings demonstrate the framework's capability to enhance cost-efficiency and system resilience in renewable-rich, EV-integrated power grids.
风能与电动汽车(EV)的日益融合给现代电力系统带来了巨大的不确定性和运行复杂性。为应对这些挑战,本文提出了一种新颖且优化的需求响应(DR)框架,旨在提高系统可靠性,同时考虑风力发电的波动性和电动汽车负荷的灵活性。所提出的方法采用统计均值 - 标准差关系纳入实时不确定性模型,以动态量化风电波动。这种建模方法能够根据风力波动性、需求弹性和电动汽车充电模式逐小时调整DR激励的分配。此外,该框架通过基于福祉的概率评估来评估系统可靠性,区分健康(P(H))、边缘(P(M))和风险(P(R))状态。本研究的创新之处在于将不确定性驱动的DR优化与概率福祉评估相结合,使DR激励能够根据实时风电波动进行自适应调整——这一能力在现有文献中尚未涉及。这种方法为管理可再生能源的波动性提供了一条切实可行的途径,而无需过度依赖昂贵的储能或备用发电。该模型在IEEE RTS - 24节点系统的12种电动汽车渗透率和充电场景下进行了验证。结果表明,所提出的框架将P(H)从95.1%(无DR)和97.2%(非优化DR)提高到97.44%,将未供应能量从52,230兆瓦时减少到51,900兆瓦时,并将DR激励成本降低了5.6%。这些发现证明了该框架在可再生能源丰富、电动汽车集成的电网中提高成本效率和系统弹性的能力。