Suppr超能文献

通过基于分数的扩散模型实现真实世界散焦去模糊

Real-world defocus deblurring via score-based diffusion models.

作者信息

Li Yuhao, Fang Haoran, Lei Xiang, Wang Qi, Hu Gang, Dong Jiaqing, Li Zilong, Lin Jiabin, Liu Qiegen, Song Xianlin

机构信息

School of Jiluan Academy, Nanchang University, Nanchang, 330031, China.

School of Information Engineering, Nanchang University, Nanchang, 330031, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):22942. doi: 10.1038/s41598-025-07326-6.

Abstract

Defocus blur commonly arises from the cameras' depth-of-field limitations. While the deep learning method shows promise for image restoration problems, defocus deblurring requires accurate training data comprising pairs of all-in-focus and defocus images, which can be difficult to collect in real-world scenarios. To address this problem, we propose a high-resolution iterative deblurring method for real scenes driven by a score-based diffusion model. The method trains a score network by learning the score function of focused images at different noise levels and reconstructs high-quality images through reverse-time stochastic differential equation (SDE). A prediction-correction (PC) framework corrects discretization errors in the reverse-time SDE to enhance the robustness of images during reconstruction. The iterative nature of diffusion models enables a gradual improvement in image quality by progressively enhancing details and refining marginal distribution with each iteration. This process allows the distribution of generated images to increasingly approximate that of sharply focused images. Unlike mainstream end-to-end approaches, this method does not require paired all-in-focus and defocus images to train the model. The real-world datasets, such as self-captured datasets, were used for model training. Additional testing was conducted on the RealBlur and DED datasets to evaluate the efficacy of the proposed method. Compared to DnCNN, FFDNet and CycleGAN, superior performance was achieved by the proposed method on real-world datasets, including self-captured scenarios, with experimental results showing improvements of approximately 13.4% in PSNR and 34.7% in SSIM. These results indicate that significant enhancement in the clarity of defocus images can be attained, effectively enabling high-resolution iterative defocus deblurring in real-world scenarios through the diffusion model.

摘要

散焦模糊通常源于相机的景深限制。虽然深度学习方法在图像恢复问题上显示出前景,但散焦去模糊需要由清晰图像和散焦图像对组成的准确训练数据,而在现实场景中收集这些数据可能很困难。为了解决这个问题,我们提出了一种基于分数的扩散模型驱动的用于真实场景的高分辨率迭代去模糊方法。该方法通过学习不同噪声水平下清晰图像的分数函数来训练分数网络,并通过反向随机微分方程(SDE)重建高质量图像。预测校正(PC)框架校正反向SDE中的离散化误差,以增强重建过程中图像的鲁棒性。扩散模型的迭代性质通过每次迭代逐步增强细节和细化边缘分布,使图像质量逐渐提高。这个过程使生成图像的分布越来越接近清晰聚焦图像的分布。与主流的端到端方法不同,该方法不需要清晰图像和散焦图像对来训练模型。使用诸如自采集数据集等真实世界数据集进行模型训练。在RealBlur和DED数据集上进行了额外测试,以评估所提出方法的有效性。与DnCNN、FFDNet和CycleGAN相比,该方法在包括自采集场景在内的真实世界数据集上取得了优异的性能,实验结果表明,在PSNR方面提高了约13.4%,在SSIM方面提高了34.7%。这些结果表明,可以显著提高散焦图像的清晰度,通过扩散模型有效地实现真实场景中的高分辨率迭代散焦去模糊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e7/12214821/ba3ad3651ea7/41598_2025_7326_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验