Suppr超能文献

利用加权基因共表达和蛋白质-蛋白质相互作用网络分析揭示玫瑰花香形成的遗传基础。

Unveiling the genetic basis of floral scent formation in roses using weighted gene co-expression and protein-protein interaction network analyses.

作者信息

Xu Chan, Chen Yuan, Xie Qiaoli, Hu Zongli, Guo Hang, Chen Guoping, Tian Shibing

机构信息

College of Bioengineering, Chongqing University, Chongqing, 400000, China.

Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21902. doi: 10.1038/s41598-025-08137-5.

Abstract

Rosa species hold considerable economic and medicinal importance, used in traditional medicine, essential oils, and landscaping. However, the mechanisms of floral scent formation in roses are not well understood, hindering genetic improvement. To bridge this gap, we conducted a combined transcriptome and metabolome analysis, identifying nine key fragrance compounds. Using Weighted Gene Co-expression Network Analysis (WGCNA), we linked 574 genes to these compounds. From these, we identified candidate genes through differential expression, functional annotations, and protein-protein interaction (PPI) networks. We predicted candidate genes, NUDIX1, NUDIX2, GERD, AFS1, AFS2, CYP82G1, HMG1, NCED2, CCD7, PSY, ICMEL2, MAD1, and MAD2 that might terpenoid-related genes, as well as potential benzenoid/phenylpropanoid-related candidate genes, DET2, DET3, ICS2, PAL1, UGT74B1, MYB330, GST, CAD1, HST, PCBER1, LAC15, CSE, PER25, PER47, PER63, FBA, LNK2, PRE1, and PRE6. Additionally, three function-unknown genes, LOC112167529, LOC112174760, and LOC112183447, were predicted as candidate genes potentially involved in the formation of floral scent.

摘要

蔷薇属植物具有相当重要的经济和药用价值,被用于传统医学、香精油和园林景观。然而,玫瑰花香形成的机制尚未完全了解,这阻碍了其遗传改良。为了填补这一空白,我们进行了转录组和代谢组联合分析,鉴定出九种关键的香气化合物。使用加权基因共表达网络分析(WGCNA),我们将574个基因与这些化合物联系起来。从中,我们通过差异表达、功能注释和蛋白质-蛋白质相互作用(PPI)网络鉴定出候选基因。我们预测了候选基因NUDIX1、NUDIX2、GERD、AFS1、AFS2、CYP82G1、HMG1、NCED2、CCD7、PSY、ICMEL2、MAD1和MAD2,它们可能是与萜类相关的基因,以及潜在的与苯丙烷类/苯丙烷相关的候选基因DET2、DET3、ICS2、PAL1、UGT74B1、MYB330、GST、CAD1、HST、PCBER1、LAC15、CSE、PER25、PER47、PER63、FBA、LNK2、PRE1和PRE6。此外,还预测了三个功能未知的基因LOC112167529、LOC112174760和LOC112183447作为可能参与花香形成的候选基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验