Suppr超能文献

用于遥感图像中小目标检测的EFCNet

EFCNet for small object detection in remote sensing images.

作者信息

Wang Yutong, Li Zhensong, Zhu Shiliang, Wei Xiaotan

机构信息

Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20393. doi: 10.1038/s41598-025-09066-z.

Abstract

Object detection, as a crucial component of remote sensing image processing, has become one of the primary methods with the maturation of deep learning technologies. Nonetheless, detecting small objects in remote sensing images remains a significant challenge. Addressing this issue, this study proposes an enhanced network model based on You Only Look Once YOLOv5, aimed at improving the detection capabilities for small objects in remote sensing images. The model employs a novel backbone network, ODCSP-Darknet53, to enhance feature extraction efficiency, and incorporates the small object enhancement bi-directional feature pyramid network (STEBIFPN) structure in the neck region of the network for optimized scaling of small object information. Additionally, we have designed two distinct weighted fusion strategies to further boost the model's performance in detecting small objects. In the detection head portion of the model, a four-head detection network specialized for small objects is constructed, and adaptively spatial feature fusion (ASFF) technology is introduced to optimize the recognition capabilities for small objects. Experiments conducted on the DOTA and DIOR datasets demonstrate that our model achieves an average precision mean of 75.9% and 80.5%, respectively, with the model's parameters and computational requirements amounting to 13.4M and 30.2 GFLOPs, respectively. Compared to the original YOLOv5s model, our model exhibits significant performance improvements in detecting typical small objects such as Bridge and Ship. Thus, this research provides an effective solution for object detection in the field of remote sensing image processing.

摘要

目标检测作为遥感图像处理的关键组成部分,随着深度学习技术的成熟,已成为主要方法之一。尽管如此,在遥感图像中检测小目标仍然是一项重大挑战。针对这一问题,本研究提出了一种基于“你只看一次”(You Only Look Once,YOLO)v5的增强网络模型,旨在提高遥感图像中小目标的检测能力。该模型采用了一种新颖的主干网络ODCSP-Darknet53来提高特征提取效率,并在网络的颈部区域引入了小目标增强双向特征金字塔网络(STEBIFPN)结构,以优化小目标信息的缩放。此外,我们设计了两种不同的加权融合策略,以进一步提升模型检测小目标的性能。在模型的检测头部分,构建了一个专门用于小目标的四头检测网络,并引入自适应空间特征融合(ASFF)技术来优化小目标的识别能力。在DOTA和DIOR数据集上进行的实验表明,我们的模型平均精度均值分别达到75.9%和80.5%,模型参数和计算量分别为1340万和302亿次浮点运算。与原始的YOLOv5s模型相比,我们的模型在检测桥梁和船舶等典型小目标方面表现出显著的性能提升。因此,本研究为遥感图像处理领域的目标检测提供了一种有效的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验