Walls Brian, Murtagh Oisín, Smith Chris M, Mullarkey Daragh, Shulyatev Dmitry, Fleischer Karsten, Zhussupbekova Ainur, Shvets Igor V
School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.
Materials Modeling and Development Laboratory, NUST MISIS, Leninskiy prosp, 4, Moscow, 199049, Russia.
Sci Rep. 2025 Jul 1;15(1):21288. doi: 10.1038/s41598-025-07519-z.
The optical anisotropy of pristine and reduced single crystalline (010) orientated [Formula: see text] is presented. The reduction of [Formula: see text] is complex due to the abundance of V-O phases, strong dependence on the reducing conditions and multitude of reduction pathways. Different phases close in stoichiometry can exhibit drastically different electronic and optical properties. Reflectance anisotropy spectroscopy (RAS) provides a non-destructive optical probe that can be employed in real-time to monitor changes in thin films. Pristine Formula: see text exhibits strong anisotropy with significant features beyond the optical bandgap of 2.5 eV. Axially resolved optical constants, extracted using ellipsometry, facilitate the calculation of the RAS which is in excellent agreement with the experimental data. Vacuum annealing has been performed at four different temperatures and X-ray Diffraction and RAS have been conducted after each anneal. Depending on the anneal temperature, different phases are introduced into the [Formula: see text] crystal including [Formula: see text], [Formula: see text] and [Formula: see text]. Spectral features of each of these phases are identified. [Formula: see text] is understood in terms of the axially resolved optical constants from the literature, while isotropic [Formula: see text] modifies the total reflection once it undergoes its semiconductor-to-metal phase transition at 340 K. This understanding of the optical response of the ideal single crystal facilitates applying RAS to monitor the growth and changes of [Formula: see text] thin films in real time.
本文展示了原始的和还原后的单晶(010)取向的[化学式:见原文]的光学各向异性。由于存在大量的V - O相、对还原条件的强烈依赖性以及多种还原途径,[化学式:见原文]的还原过程较为复杂。化学计量比相近的不同相可能表现出截然不同的电学和光学性质。反射率各向异性光谱(RAS)提供了一种无损光学探针,可用于实时监测薄膜的变化。原始的[化学式:见原文](010)表现出强烈的各向异性,在2.5 eV的光学带隙之外具有显著特征。使用椭偏仪提取的轴向分辨光学常数有助于计算RAS,其与实验数据高度吻合。在四个不同温度下进行了真空退火,并在每次退火后进行了X射线衍射和RAS测量。根据退火温度的不同,[化学式:见原文]晶体中会引入不同的相,包括[化学式:见原文]、[化学式:见原文]和[化学式:见原文]。确定了这些相各自的光谱特征。根据文献中的轴向分辨光学常数来理解[化学式:见原文],而各向同性的[化学式:见原文]在340 K发生半导体到金属的相变后会改变全反射。对理想单晶光学响应的这种理解有助于应用RAS实时监测[化学式:见原文]薄膜的生长和变化。