Lin Huanjie, Yue Yubiao, Xie Li, Chen Bingbing, Li Weifeng, Yang Fan, Zhang Qinrong, Chen Huai
Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, No.250, East Changgang Road, Haizhu District, Guangzhou, 510260, China.
Guangzhou Medical University, Guangzhou, China.
BMC Med Imaging. 2025 Jul 1;25(1):216. doi: 10.1186/s12880-025-01787-x.
Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning and radiomics could enhance the predictive accuracy of meningioma consistency.
A retrospective study analyzed 204 meningioma patients from two centers: the Second Affiliated Hospital of Guangzhou Medical University and the Southern Theater Command Hospital PLA. Three models-a radiomics model (Rad_Model), a deep learning model (DL_Model), and a combined model (DLR_Model)-were developed. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, and precision.
The DLR_Model outperformed other models across all cohorts. In the training set, it achieved AUC 0.957, accuracy of 0.908, and precision of 0.965. In the external test cohort, it maintained superior performance with an AUC of 0.854, accuracy of 0.778, and precision of 0.893, surpassing both the Rad_Model (AUC = 0.768) and DL_Model (AUC = 0.720). Combining radiomics and deep learning features improved predictive performance and robustness.
Our study introduced and evaluated a deep learning radiomics model (DLR-Model) to accurately predict the consistency of meningiomas, which has the potential to improve preoperative assessments and surgical planning.
脑膜瘤的质地对手术规划至关重要,因为软肿瘤比硬肿瘤更容易切除。目前使用MRI评估肿瘤质地具有主观性且缺乏定量准确性。整合深度学习和放射组学可以提高脑膜瘤质地的预测准确性。
一项回顾性研究分析了来自两个中心(广州医科大学附属第二医院和中国人民解放军南部战区总医院)的204例脑膜瘤患者。开发了三种模型——放射组学模型(Rad_Model)、深度学习模型(DL_Model)和联合模型(DLR_Model)。使用AUC、准确性、敏感性、特异性和精确性评估模型性能。
DLR_Model在所有队列中均优于其他模型。在训练集中,它的AUC为0.957,准确性为0.908,精确性为0.965。在外部测试队列中,它保持了卓越的性能,AUC为0.854,准确性为0.778,精确性为0.893,超过了Rad_Model(AUC = 0.768)和DL_Model(AUC = 0.720)。结合放射组学和深度学习特征提高了预测性能和稳健性。
我们的研究引入并评估了一种深度学习放射组学模型(DLR-Model)来准确预测脑膜瘤的质地,这有可能改善术前评估和手术规划。