Suppr超能文献

新型放射组学特征与深度学习:在小数据集中小脑转移瘤与肺癌病理类型的鉴别。

Novel radiomic features versus deep learning: differentiating brain metastases from pathological lung cancer types in small datasets.

机构信息

Department of Mechatronics Engineering, Engineering and Architecture Faculty, Nisantasi University, Istanbul, Turkey.

出版信息

Br J Radiol. 2023 Jun 1;96(1146):20220841. doi: 10.1259/bjr.20220841. Epub 2023 May 2.

Abstract

OBJECTIVE

Accurate diagnosis and early treatment are crucial for survival in patients with brain metastases. This study aims to expand the capability of radiomics-based classification algorithms with novel features and compare results with deep learning-based algorithms to differentiate the subtypes of lung cancer from MRI of metastatic lesions in the brain.

METHODS

This study includes 75 small cell lung carcinoma, 72 squamous cell carcinoma, and 75 adenocarcinoma segments. For the radiomics-based algorithm, novel features from the original Laplacian of Gaussian filtered and two-dimensional wavelet transformed images were extracted, and a new three-stage feature selection algorithm was proposed for feature selection. Two classification methods were applied to images to identify the subtypes of lung cancer. Additionally, EfficientNet and ResNet with transfer learning were used as classifiers to compare the results of the proposed algorithm.

RESULTS

The sensitivity and specificity values of the radiomics-based classifier are 94.44 and 95.33%, and for the second classifier are 87.67% and 92.62%, respectively. Besides, a one-all approach comparison was made utilizing two deep learning-based classifiers; The sensitivity and specificity values of 94.29 and 94.08% were obtained from ResNet-50. Moreover, mentioned metrics for EfficientNet-b0 are 92.86 and 93.42%. Furthermore, the accuracies of two radiomics-based and two deep learning-based models were 84.68%, 78.37%, 92.34%, and 90.99%, respectively for one-one approach.

CONCLUSION

The results suggest that the proposed radiomics-based algorithm is a helpful diagnostic assistant to improve decision-making for treating patients with brain metastases in small datasets.

ADVANCES IN KNOWLEDGE

Firstly, the proposed method of this study extracts novel features from transformations of the original images, such as wavelet and Laplacian of Gaussian filter for the first time in literature. Secondly, this is the first study that investigates the classification performance of the shallow and deep learning approaches to identify subtypes of lung cancer.

摘要

目的

准确的诊断和早期治疗对于脑转移患者的生存至关重要。本研究旨在通过提取新的特征,扩展基于放射组学的分类算法的能力,并与基于深度学习的算法进行比较,从而从脑转移瘤的 MRI 中区分肺癌的亚型。

方法

本研究包括 75 个小细胞肺癌、72 个鳞状细胞癌和 75 个腺癌段。对于基于放射组学的算法,从原始拉普拉斯高斯滤波和二维小波变换图像中提取新的特征,并提出了一种新的三阶段特征选择算法进行特征选择。应用两种分类方法对图像进行分类,以识别肺癌的亚型。此外,还使用了带有迁移学习的 EfficientNet 和 ResNet 作为分类器,以比较所提出算法的结果。

结果

基于放射组学的分类器的灵敏度和特异性值分别为 94.44%和 95.33%,而第二个分类器的灵敏度和特异性值分别为 87.67%和 92.62%。此外,利用两种基于深度学习的分类器进行了一对一的比较;ResNet-50 获得的灵敏度和特异性值分别为 94.29%和 94.08%。此外,EfficientNet-b0 的上述指标分别为 92.86%和 93.42%。此外,对于一对一的方法,两种基于放射组学和两种基于深度学习的模型的准确性分别为 84.68%、78.37%、92.34%和 90.99%。

结论

研究结果表明,所提出的基于放射组学的算法是一种有助于提高小数据集治疗脑转移患者决策的诊断辅助工具。

知识的发展

首先,本研究提出的方法首次在文献中从原始图像的变换中提取新的特征,如小波和拉普拉斯高斯滤波器。其次,这是第一项研究基于浅层和深度学习方法对识别肺癌亚型的分类性能的研究。

相似文献

引用本文的文献

本文引用的文献

6
Deep-Learning Detection of Cancer Metastases to the Brain on MRI.基于磁共振成像的深度学习检测脑癌转移灶
J Magn Reson Imaging. 2020 Oct;52(4):1227-1236. doi: 10.1002/jmri.27129. Epub 2020 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验