Suppr超能文献

基于MRI的多模态深度学习影像组学模型对子宫内膜癌肌层浸润有无的术前鉴别诊断

Preoperative discrimination of absence or presence of myometrial invasion in endometrial cancer with an MRI-based multimodal deep learning radiomics model.

作者信息

Chen Yuan, Ruan Xiaohong, Wang Ximiao, Li Peijun, Chen Yehang, Feng Bao, Wen Xianyan, Sun Junqi, Zheng Changye, Zou Yujian, Liang Bo, Li Mingwei, Long Wansheng, Shen Yuan

机构信息

The First Affiliated Hospital of Jinan University, Guangzhou, China.

Jiangmen Central Hospital, Jiangmen, China.

出版信息

Abdom Radiol (NY). 2025 Jan 2. doi: 10.1007/s00261-024-04766-y.

Abstract

OBJECTIVE

Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI.

METHODS

During March 2010 and February 2023, 1139 EC patients (age 54.771 ± 8.465 years; range 24-89 years) from five independent centers were enrolled retrospectively. We utilized ResNet18 to extract multi-scale deep learning features from T2-weighted imaging followed by feature selection via Mann-Whitney U test. Subsequently, a Deep Learning Signature (DLS) was formulated using Integrated Sparse Bayesian Extreme Learning Machine. Furthermore, we developed Clinical Model (CM) based on clinical characteristics and MDLR model by integrating clinical characteristics with DLS. The area under the curve (AUC) was used for evaluating diagnostic performance of the models. Decision curve analysis (DCA) and integrated discrimination index (IDI) were used to assess the clinical benefit and compare the predictive performance of models.

RESULTS

The MDLR model comprised of age, histopathologic grade, subjective MR findings (TMD and Reading for MI status) and DLS demonstrated the best predictive performance. The AUC values for MDLR in training set, internal validation set, external validation set 1, and external validation set 2 were 0.899 (95% CI, 0.866-0.926), 0.874 (95% CI, 0.829-0.912), 0.862 (95% CI, 0.817-0.899) and 0.867 (95% CI, 0.806-0.914) respectively. The IDI and DCA showed higher diagnostic performance and clinical net benefits for the MDLR than for CM or DLS, which revealed MDLR may enhance decision-making support.

CONCLUSIONS

The MDLR which incorporated clinical characteristics and DLS could improve preoperative accuracy in discriminating absence or presence of MI. This improvement may facilitate individualized treatment decision-making for EC.

摘要

目的

准确的术前子宫肌层浸润(MI)评估对于子宫内膜癌(EC)的治疗决策至关重要。然而,常用的磁共振成像(MRI)技术用于该评估的诊断准确性存在很大差异。本研究旨在通过开发和验证基于MRI的多模态深度学习影像组学(MDLR)模型,提高术前对MI有无的鉴别能力。

方法

回顾性纳入2010年3月至2023年2月期间来自五个独立中心的1139例EC患者(年龄54.771±8.465岁;范围24 - 89岁)。我们使用ResNet18从T2加权成像中提取多尺度深度学习特征,随后通过曼 - 惠特尼U检验进行特征选择。随后,使用集成稀疏贝叶斯极限学习机制定深度学习特征(DLS)。此外,我们基于临床特征开发了临床模型(CM),并通过将临床特征与DLS相结合构建了MDLR模型。曲线下面积(AUC)用于评估模型的诊断性能。决策曲线分析(DCA)和综合判别指数(IDI)用于评估临床获益并比较模型的预测性能。

结果

由年龄、组织病理学分级、主观MR表现(TMD和MI状态判读)和DLS组成的MDLR模型表现出最佳的预测性能。MDLR在训练集、内部验证集、外部验证集1和外部验证集2中的AUC值分别为0.899(95%CI,0.866 - 0.926)、0.874(95%CI,0.829 - 0.912)、0.862(95%CI,0.817 - 0.899)和0.867(95%CI,0.806 - 0.914)。IDI和DCA显示,MDLR比CM或DLS具有更高的诊断性能和临床净获益,这表明MDLR可能增强决策支持。

结论

结合临床特征和DLS的MDLR可以提高术前鉴别MI有无的准确性。这种提高可能有助于EC的个体化治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验