使用贝叶斯惩罚似然PET重建增强放射组学稳健性:在体模和非小细胞肺癌患者研究中的应用

Enhancing radiomics robustness using bayesian penalized likelihood PET reconstruction: application to Phantom and non-small cell lung cancer patient studies.

作者信息

Valibeiglou Zahra, Islamian Jalil Pirayesh, Soleymani Yunus, Farzanehfar Saeed, Aghahosseini Farahnaz, Gilani Neda, Rahmim Arman, Sheikhzadeh Peyman

机构信息

Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):223. doi: 10.1186/s12880-025-01774-2.

Abstract

PURPOSE

This study aims to enhance the diagnostic and prognostic capabilities of PET imaging through improved robustness of radiomics features, utilizing the Bayesian penalized likelihood (BPL) reconstruction algorithm. Specifically, we focus on F-FDG PET imaging of lung cancer, which, with non-small cell lung carcinoma (NSCLC) as its most prevalent form, continues to be a leading cause of cancer-related mortality worldwide. The early detection and precise staging of NSCLC are crucial for effectively managing and treating the disease.

METHOD

We studied a NEMA image quality (IQ) phantom and 15 patient PET lesions (14 NSCLC patients selected from 30 patients originally considered). The study assessed the stability of radiomics features against various imaging parameters, emphasizing the impact of the BPL reconstruction algorithm with varying β-values (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, and 700) and three phantom lesion to background ratios (LBRs) of 2:1, 4:1, and 8:1. Manual segmentation was performed, and subsequently, 130 radiomic features were extracted from the reconstructed images. The stability of radiomics features was assessed by calculating the coefficient of variation (COV) for each feature across variations in reconstruction parameters. A COV of ≤ 5% indicated high stability.

RESULTS

Our results indicate that morphological and intensity-based features exhibit excellent stability, with a COV of less than 5%. Texture-based features, despite their complexity, also demonstrated robustness. Specifically, 32.3%, 39.2%, 42.3%, and 37.6% of features exhibited high stability in phantom LBR 2:1, phantom LBR 4:1, phantom LBR 8:1, and patient studies, respectively. Overall, 13 morphological, 8 intensity, 6 intensity-histogram, and 5 texture-based features were found to be highly stable against different LBRs and reconstruction parameters.

CONCLUSIONS

The BPL reconstruction algorithm may enhance the robustness of PET radiomics features, supporting their use in clinical settings for non-invasive diagnosis and staging. The adoption of BPL towards improved PET radiomics robustness has the potential to transform NSCLC evaluation and management, but still needs standardization.

摘要

目的

本研究旨在通过利用贝叶斯惩罚似然(BPL)重建算法提高影像组学特征的稳健性,从而增强PET成像的诊断和预后能力。具体而言,我们专注于肺癌的F-FDG PET成像,其中非小细胞肺癌(NSCLC)是最常见的形式,仍然是全球癌症相关死亡的主要原因。NSCLC的早期检测和精确分期对于有效管理和治疗该疾病至关重要。

方法

我们研究了一个NEMA图像质量(IQ)体模和15例患者的PET病变(从最初考虑的30例患者中选取了14例NSCLC患者)。该研究评估了影像组学特征对各种成像参数的稳定性,重点强调了不同β值(50、100、150、200、250、300、350、400、450、500、600和700)的BPL重建算法以及三种体模病变与背景比(LBR)为2:1、4:1和8:1的影响。进行了手动分割,随后从重建图像中提取了130个影像组学特征。通过计算每个特征在重建参数变化时的变异系数(COV)来评估影像组学特征的稳定性。COV≤5%表示高稳定性。

结果

我们的结果表明,基于形态学和强度的特征表现出优异的稳定性,COV小于5%。基于纹理的特征尽管复杂,但也显示出稳健性。具体而言,分别有32.3%、39.2%、42.3%和37.6%的特征在体模LBR 2:1、体模LBR 4:1、体模LBR 8:1和患者研究中表现出高稳定性。总体而言,发现13个形态学、8个强度、6个强度直方图和5个基于纹理的特征在不同的LBR和重建参数下具有高度稳定性。

结论

BPL重建算法可能会增强PET影像组学特征的稳健性,支持其在临床环境中用于无创诊断和分期。采用BPL来提高PET影像组学的稳健性有可能改变NSCLC的评估和管理,但仍需要标准化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索