Suppr超能文献

基于自适应卷积神经网络和灰狼算法的乳腺癌诊断优化模型。

An optimized model based on adaptive convolutional neural network and grey wolf algorithm for breast cancer diagnosis.

机构信息

College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.

Information Technology Department, Faculty of Computers and Artificial Intelligence, Damietta University, Damietta, Egypt.

出版信息

PLoS One. 2024 Aug 19;19(8):e0304868. doi: 10.1371/journal.pone.0304868. eCollection 2024.

Abstract

Medical image classification (IC) is a method for categorizing images according to the appropriate pathological stage. It is a crucial stage in computer-aided diagnosis (CAD) systems, which were created to help radiologists with reading and analyzing medical images as well as with the early detection of tumors and other disorders. The use of convolutional neural network (CNN) models in the medical industry has recently increased, and they achieve great results at IC, particularly in terms of high performance and robustness. The proposed method uses pre-trained models such as Dense Convolutional Network (DenseNet)-121 and Visual Geometry Group (VGG)-16 as feature extractor networks, bidirectional long short-term memory (BiLSTM) layers for temporal feature extraction, and the Support Vector Machine (SVM) and Random Forest (RF) algorithms to perform classification. For improved performance, the selected pre-trained CNN hyperparameters have been optimized using a modified grey wolf optimization method. The experimental analysis for the presented model on the Mammographic Image Analysis Society (MIAS) dataset shows that the VGG16 model is powerful for BC classification with overall accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC) of 99.86%, 99.9%, 99.7%, 97.1%, and 1.0, respectively, on the MIAS dataset and 99.4%, 99.03%, 99.2%, 97.4%, and 1.0, respectively, on the INbreast dataset.

摘要

医学图像分类(IC)是一种根据适当的病理阶段对图像进行分类的方法。它是计算机辅助诊断(CAD)系统中的一个关键阶段,旨在帮助放射科医生阅读和分析医学图像,并早期发现肿瘤和其他疾病。卷积神经网络(CNN)模型在医疗行业中的应用最近有所增加,它们在 IC 中取得了很好的效果,尤其是在高性能和鲁棒性方面。所提出的方法使用预先训练的模型,如密集卷积网络(DenseNet)-121 和视觉几何组(VGG)-16 作为特征提取网络,双向长短期记忆(BiLSTM)层进行时间特征提取,以及支持向量机(SVM)和随机森林(RF)算法进行分类。为了提高性能,使用改进的灰狼优化方法对选定的预训练 CNN 超参数进行了优化。在 Mammographic Image Analysis Society(MIAS)数据集上对所提出的模型进行实验分析表明,VGG16 模型在 BC 分类方面非常强大,在 MIAS 数据集上的整体准确率、敏感度、特异性、精度和 ROC 曲线下面积(AUC)分别为 99.86%、99.9%、99.7%、97.1%和 1.0,在 INbreast 数据集上的分别为 99.4%、99.03%、99.2%、97.4%和 1.0。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/140f/11332925/6440ed611e4b/pone.0304868.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验