Suppr超能文献

队列数据流行病学分析中的透明度——以挪威母婴队列研究(MoBa)为例

Transparency in epidemiological analyses of cohort data a case study of the Norwegian mother, father, and child cohort study (MoBa).

作者信息

Roettger Timo, Askelund Adrian Dahl, Birkenæs Viktoria, Bjørndal Ludvig Daae, Bochynska Agata, Glaser Bernt Damian, Kalandadze Tamara, Korbmacher Max, Malovic Ivana, Mayor Julien, Parekh Pravesh, Quintana Daniel S, Hannigan Laurie J

机构信息

University of Oslo, Oslo, Norway.

Psychiatric Genetic Epidemiology group, Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway.

出版信息

BMC Med Res Methodol. 2025 Jul 1;25(1):171. doi: 10.1186/s12874-025-02601-6.

Abstract

BACKGROUND

Epidemiological research is central to our understanding of health and disease. Secondary analysis of cohort data is an important tool in epidemiological research but is vulnerable to practices that can reduce the validity and robustness of results. As such, adopting measures to increase the transparency and reproducibility of secondary data analysis is paramount to ensuring the robustness and usefulness of findings. The uptake of such practices has not yet been systematically assessed.

METHODS

Using the Norwegian Mother, Father, and Child Cohort study (MoBa; [23, 24]) as a case study, we assessed the prevalence of the following reproducible practices in publications between 2007-2023: preregistering secondary analyses, sharing of synthetic data, additional materials, and analysis scripts, conducting robustness checks, directly replicating previously published studies, declaring conflicts of interest and publishing publicly available versions of the paper.

RESULTS

Preregistering secondary data analysis was only found in 0.4% of articles. No articles used synthetic data sets. Sharing practices of additional data (2.3%), additional materials (3.4%) and analysis scripts (4.2%) were rare. Several practices, including data and analysis sharing, preregistration and robustness checks became more frequent over time. Based on these assessments, we present a practical example for how researchers might improve transparency and reproducibility of their research.

CONCLUSIONS

The present assessment demonstrates that some reproducible practices are more common than others, with some practices being virtually absent. In line with a broader shift towards open science, we observed an increasing use of reproducible research practices in recent years. Nonetheless, the large amount of analytical flexibility offered by cohorts such as MoBa places additional responsibility on researchers to adopt such practices with urgency, to both ensure the robustness of their findings and earn the confidence of those using them. A particular focus in future efforts should be put on practices that help mitigating bias due to researcher degrees of freedom - namely, preregistration, transparent sharing of analysis scripts, and robustness checks. We demonstrate by example that challenges in implementing reproducible research practices in analysis of secondary cohort data-even including those associated with data sharing-can be meaningfully overcome.

摘要

背景

流行病学研究是我们理解健康与疾病的核心。队列数据的二次分析是流行病学研究中的一项重要工具,但容易受到一些会降低结果有效性和稳健性的做法的影响。因此,采取措施提高二次数据分析的透明度和可重复性对于确保研究结果的稳健性和实用性至关重要。目前尚未对这些做法的采用情况进行系统评估。

方法

以挪威母亲、父亲和儿童队列研究(MoBa;[23, 24])为例,我们评估了2007年至2023年期间出版物中以下可重复做法的流行情况:二次分析的预注册、合成数据的共享、其他材料和分析脚本的共享、进行稳健性检验、直接复制先前发表的研究、声明利益冲突以及发表论文的公开可用版本。

结果

仅0.4%的文章进行了二次数据分析的预注册。没有文章使用合成数据集。其他数据(2.3%)、其他材料(3.4%)和分析脚本(4.2%)的共享做法很少见。随着时间的推移,包括数据和分析共享、预注册和稳健性检验在内的几种做法变得更加频繁。基于这些评估,我们给出了一个研究人员如何提高其研究透明度和可重复性的实际示例。

结论

本次评估表明,一些可重复做法比其他做法更常见,有些做法几乎不存在。与向开放科学的更广泛转变一致,我们观察到近年来可重复研究做法的使用有所增加。尽管如此,像MoBa这样的队列所提供的大量分析灵活性给研究人员带来了额外的责任,要求他们迫切采用这些做法,以确保研究结果的稳健性并赢得使用这些结果的人的信任。未来的努力应特别关注有助于减轻因研究人员自由度导致的偏差的做法,即预注册、分析脚本的透明共享和稳健性检验。我们通过示例表明,在二次队列数据分析中实施可重复研究做法所面临的挑战——甚至包括与数据共享相关的挑战——是可以有效克服的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1318/12210527/8bb4ca508d04/12874_2025_2601_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验