文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索ENPP5作为脓毒症的诊断生物标志物:一项全面的生物信息学分析

Exploring ENPP5 as a diagnostic biomarker for sepsis: a comprehensive bioinformatics analysis.

作者信息

Gao Jiamin, Li Yanjun, Huang Jinping, Wei Cailing, Chen Jieling, Huang Aichun, Liu Ningmei, Lu Yibo, Yang Shixiong

机构信息

Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Nanning, 530023, China.

Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, 530023, China.

出版信息

BMC Infect Dis. 2025 Jul 1;25(1):831. doi: 10.1186/s12879-025-11152-6.


DOI:10.1186/s12879-025-11152-6
PMID:40597679
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12211274/
Abstract

BACKGROUND: The rising mortality rates in sepsis highlight the current lack of reliable therapeutic biomarkers. This study aims to identify markers associated with biological functions to offer new strategies for sepsis diagnosis. METHODS: We conducted differential expression analysis to identify differentially expressed messenger RNAs (DEmRs), long non-coding RNA (DElncRs), and microRNAs (DEmiRs) in sepsis compared to healthy controls. Enrichment analysis was performed using DEmRs, and a lncRNA-miRNA-mRNA competing endogenous RNA network was constructed. Least absolute shrinkage and selection operator (LASSO) and random forest models were applied to identify diagnostic mRNAs. The optimal diagnostic model was determined through decision curve analysis, resulting in the identification of seven hub genes. The key gene, determined by its highest importance and the largest area under the receiver operating characteristics curve (AUC) value, was further validated. Additionally, we analyzed the correlation of the key gene with microenvironment cell infiltration and immune genes. RESULTS: A total of 4,450 intersected DEmRs (GSE66099, GSE13904, GSE154918, GSE8121) that were significantly involved in the cell cycle. We obtained 13 mRNAs, and further screened seven hub genes, including PPARD, ZSCAN2, ABI2, ENPP5, FMNL3, CD3E, and CAMK4. Subsequently, ENPP5 was as the key gene based on importance and AUC value. Moreover, Neutrophil cells and macrophages had a high abundance in sepsis patients. ENPP5 was positively associated with T cells but negatively associated with mast cells. CONCLUSION: ENPP5, identified as a key gene, exhibits significant associations with immune cell infiltration and immune-related genes. This suggests its potential role as a biomarker for novel therapeutic strategies in sepsis.

摘要

背景:脓毒症死亡率的不断上升凸显了当前缺乏可靠的治疗生物标志物。本研究旨在识别与生物学功能相关的标志物,为脓毒症诊断提供新策略。 方法:我们进行了差异表达分析,以识别脓毒症患者与健康对照相比差异表达的信使核糖核酸(DEmRs)、长链非编码核糖核酸(DElncRs)和微小核糖核酸(DEmiRs)。使用DEmRs进行富集分析,并构建lncRNA-miRNA-mRNA竞争性内源RNA网络。应用最小绝对收缩和选择算子(LASSO)及随机森林模型识别诊断性mRNA。通过决策曲线分析确定最佳诊断模型,从而识别出7个枢纽基因。对重要性最高且受试者工作特征曲线(AUC)值最大的关键基因进行进一步验证。此外,我们分析了关键基因与微环境细胞浸润及免疫基因的相关性。 结果:共有4450个相交的DEmRs(GSE66099、GSE13904、GSE154918、GSE8121)显著参与细胞周期。我们获得了13个mRNA,并进一步筛选出7个枢纽基因,包括PPARD、ZSCAN2、ABI2、ENPP5、FMNL3、CD3E和CAMK4。随后,基于重要性和AUC值,ENPP5被确定为关键基因。此外,脓毒症患者中性粒细胞和巨噬细胞丰度较高。ENPP5与T细胞呈正相关,但与肥大细胞呈负相关。 结论:ENPP5被确定为关键基因,与免疫细胞浸润及免疫相关基因存在显著关联。这表明其在脓毒症新治疗策略中作为生物标志物的潜在作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/75c683e3f829/12879_2025_11152_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/15576f343e56/12879_2025_11152_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/eb34ae833638/12879_2025_11152_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/0e8eaaf44a2f/12879_2025_11152_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/2e592f8be598/12879_2025_11152_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/5426545f59c9/12879_2025_11152_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/75c683e3f829/12879_2025_11152_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/15576f343e56/12879_2025_11152_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/eb34ae833638/12879_2025_11152_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/0e8eaaf44a2f/12879_2025_11152_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/2e592f8be598/12879_2025_11152_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/5426545f59c9/12879_2025_11152_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2289/12211274/75c683e3f829/12879_2025_11152_Fig6_HTML.jpg

相似文献

[1]
Exploring ENPP5 as a diagnostic biomarker for sepsis: a comprehensive bioinformatics analysis.

BMC Infect Dis. 2025-7-1

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Combination of machine learning and protein‑protein interaction network established one ATM‑DPP4‑TXN ferroptotic diagnostic model with experimental validation.

Mol Med Rep. 2025-9

[4]
The role of senescence-related hub genes correlating with immune infiltration in type A aortic dissection: Novel insights based on bioinformatic analysis.

PLoS One. 2025-6-25

[5]
Screening and validation of long non-coding RNAs associated with colorectal cancer based on random forest and LASSO regression algorithm.

Discov Oncol. 2025-7-1

[6]
Identification of potential pathogenic genes associated with the comorbidity of rheumatoid arthritis and renal fibrosis using bioinformatics and machine learning.

Sci Rep. 2025-7-1

[7]
Comprehensive analysis and experimental validation of BST1 as a novel diagnostic biomarker for pediatric sepsis using multiple machine learning algorithms.

Eur J Pediatr. 2025-6-25

[8]
Identification of a LncRNA based CeRNA network signature to establish a prognostic model and explore potential therapeutic targets in gastric cancer.

Sci Rep. 2025-7-1

[9]
Identification of novel biomarkers related to pathogenesis and treatment of psoriasis based on integrated analysis of weighted gene co-expression network analysis and LASSO.

PLoS One. 2025-6-25

[10]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

本文引用的文献

[1]
The role of ABI2 in modulating nuclear proteins: Therapeutic implications for NUP54 and NUP153 in TNBC.

Adv Protein Chem Struct Biol. 2025

[2]
Differential lung gene expression identified Zscan2 and Bag6 as novel tissue repair players in an experimental COPD model.

PLoS One. 2024

[3]
Deciphering the implications of mitophagy-related signatures in clinical outcomes and microenvironment heterogeneity of clear cell renal cell carcinoma.

J Cancer Res Clin Oncol. 2023-11

[4]
A review on longitudinal data analysis with random forest.

Brief Bioinform. 2023-3-19

[5]
FMNL3 is Overexpressed in Tumor Tissues and Predicts an Immuno-Hot Phenotype in Pancreatic Cancer.

Int J Gen Med. 2022-11-22

[6]
ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package to Generate Venn Diagram.

Front Genet. 2021-9-7

[7]
Identification of an Alveolar Macrophage-Related Core Gene Set in Acute Respiratory Distress Syndrome.

J Inflamm Res. 2021-6-1

[8]
Tumor-Specific T Cells Exacerbate Mortality and Immune Dysregulation during Sepsis.

J Immunol. 2021-5-15

[9]
MIR210HG Aggravates Sepsis-Induced Inflammatory Response of Proximal Tubular Epithelial Cell via the NF-κB Signaling Pathway.

Yonsei Med J. 2021-5

[10]
Screening of Key Genes of Sepsis and Septic Shock Using Bioinformatics Analysis.

J Inflamm Res. 2021-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索