MCAUnet:一种用于自动定量肝硬化患者身体成分的深度学习框架。

MCAUnet: a deep learning framework for automated quantification of body composition in liver cirrhosis patients.

作者信息

Wang Jiening, Xia Shuqi, Zhang Jie, Wang Xinyi, Zhao Cai, Zheng Wen

机构信息

College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, University Street, Jinzhong, 030600, China.

Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai, 200050, China.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):215. doi: 10.1186/s12880-025-01756-4.

Abstract

Traditional methods for measuring body composition in CT scans rely on labor-intensive manual delineation, which is time-consuming and imprecise. This study proposes a deep learning-driven framework, MCAUnet, for accurate and automated quantification of body composition and comprehensive survival analysis in cirrhotic patients. A total of 11,362 L3-level lumbar CT slices were collected to train and validate the segmentation model. The proposed model incorporates an attention mechanism from the channel perspective, enabling adaptive fusion of critical channel features. Experimental results demonstrate that our approach achieves an average Dice coefficient of 0.952 for visceral fat segmentation, significantly outperforming existing segmentation models. Based on the quantified body composition, sarcopenic visceral obesity (SVO) was defined, and an association model was developed to analyze the relationship between SVO and survival rates in cirrhotic patients. The study revealed that 3-year and 5-year survival rates of SVO patients were significantly lower than those of non-SVO patients. Regression analysis further validated the strong correlation between SVO and mortality in cirrhotic patients. In summary, the MCAUnet framework provides a novel, precise, and automated tool for body composition quantification and survival analysis in cirrhotic patients, offering potential support for clinical decision-making and personalized treatment strategies.

摘要

CT扫描中测量身体成分的传统方法依赖于劳动强度大的手动勾勒,既耗时又不准确。本研究提出了一种由深度学习驱动的框架MCAUnet,用于对肝硬化患者的身体成分进行准确且自动化的量化以及全面的生存分析。总共收集了11362张L3水平的腰椎CT切片来训练和验证分割模型。所提出的模型从通道角度纳入了注意力机制,能够对关键通道特征进行自适应融合。实验结果表明,我们的方法在内脏脂肪分割方面的平均Dice系数达到0.952,显著优于现有的分割模型。基于量化的身体成分,定义了肌少症性内脏肥胖(SVO),并开发了一个关联模型来分析肝硬化患者中SVO与生存率之间的关系。研究表明,SVO患者的3年和5年生存率显著低于非SVO患者。回归分析进一步验证了肝硬化患者中SVO与死亡率之间的强相关性。总之,MCAUnet框架为肝硬化患者的身体成分量化和生存分析提供了一种新颖、精确且自动化的工具,为临床决策和个性化治疗策略提供了潜在支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feff/12210749/b14019887c6e/12880_2025_1756_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索