文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

AMCL:用于多功能治疗性肽预测的带难样本挖掘的监督对比学习

AMCL: supervised contrastive learning with hard sample mining for multi-functional therapeutic peptide prediction.

作者信息

Fang Jiwei, Fan Henghui, Zhao Jintao, Zhao Jianping, Xia Junfeng

机构信息

College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, 830046, China.

Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.

出版信息

BMC Biol. 2025 Jul 1;23(1):170. doi: 10.1186/s12915-025-02273-0.


DOI:10.1186/s12915-025-02273-0
PMID:40598412
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12210482/
Abstract

BACKGROUND: Multi-functional therapeutic peptides have emerged as promising candidates in drug development and disease diagnosis due to their biocompatibility, targeting capability, and low immunogenicity. However, the identification of peptide functions through wet-lab experiments is both time-consuming and costly, necessitating efficient computational prediction methods. The field faces challenges such as long-tail distribution problems, data sparsity, and complex label co-occurrence patterns due to peptides' multi-functional nature. RESULTS: To address these challenges, we propose AMCL, a novel framework for multi-functional therapeutic peptide prediction. AMCL incorporates a semantic-preserving data augmentation strategy, a multi-label supervised contrastive learning mechanism with hard sample mining, and a weighted combined loss combining Focal Dice Loss (FDL) and Distribution-Balanced Loss (DBL) to alleviate class imbalance issues. Additionally, we introduce a category-adaptive threshold selection mechanism for individual functional categories. The interpretability of AMCL is demonstrated through feature space analysis and Gradient-weighted Class Activation Mapping (Grad-CAM) visualization. CONCLUSIONS: Comprehensive experiments show that AMCL significantly outperforms existing methods across multiple key metrics, including Absolute true, Accuracy, Macro-F1, and Micro-F1, establishing a new state-of-the-art in therapeutic peptide multi-functional prediction.

摘要

背景:多功能治疗性肽因其生物相容性、靶向能力和低免疫原性,已成为药物开发和疾病诊断中颇具潜力的候选物。然而,通过湿实验室实验鉴定肽的功能既耗时又昂贵,因此需要高效的计算预测方法。由于肽的多功能性质,该领域面临长尾分布问题、数据稀疏性和复杂的标签共现模式等挑战。 结果:为应对这些挑战,我们提出了AMCL,一种用于多功能治疗性肽预测的新型框架。AMCL采用了语义保留数据增强策略、带有难样本挖掘的多标签监督对比学习机制,以及结合了焦点骰子损失(FDL)和分布平衡损失(DBL)的加权组合损失,以缓解类别不平衡问题。此外,我们还为各个功能类别引入了类别自适应阈值选择机制。通过特征空间分析和梯度加权类激活映射(Grad-CAM)可视化展示了AMCL的可解释性。 结论:全面的实验表明,AMCL在包括绝对真值、准确率、宏F1和微F1等多个关键指标上显著优于现有方法,在治疗性肽多功能预测方面建立了新的最先进水平。

相似文献

[1]
AMCL: supervised contrastive learning with hard sample mining for multi-functional therapeutic peptide prediction.

BMC Biol. 2025-7-1

[2]
Self-Supervised Contrastive Learning for Medical Time Series: A Systematic Review.

Sensors (Basel). 2023-4-23

[3]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[4]
AVP-HNCL: Innovative Contrastive Learning with a Queue-Based Negative Sampling Strategy for Dual-Phase Antiviral Peptide Prediction.

J Chem Inf Model. 2025-6-23

[5]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[6]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[7]
Identification of Multi-functional Therapeutic Peptides Based on Prototypical Supervised Contrastive Learning.

Interdiscip Sci. 2025-6

[8]
A Responsible Framework for Assessing, Selecting, and Explaining Machine Learning Models in Cardiovascular Disease Outcomes Among People With Type 2 Diabetes: Methodology and Validation Study.

JMIR Med Inform. 2025-6-27

[9]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[10]
Detecting soil-transmitted helminth and Schistosoma mansoni eggs in Kato-Katz stool smear microscopy images: A comprehensive in- and out-of-distribution evaluation of YOLOv7 variants.

PLoS Negl Trop Dis. 2025-7-3

本文引用的文献

[1]
Advancing the Accuracy of Anti-MRSA Peptide Prediction Through Integrating Multi-Source Protein Language Models.

Interdiscip Sci. 2025-3-11

[2]
Identification of Multi-functional Therapeutic Peptides Based on Prototypical Supervised Contrastive Learning.

Interdiscip Sci. 2025-6

[3]
EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.

Interdiscip Sci. 2024-12-23

[4]
iMFP-LG: Identify Novel Multi-functional Peptides Using Protein Language Models and Graph-based Deep Learning.

Genomics Proteomics Bioinformatics. 2025-1-15

[5]
CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.

Brief Bioinform. 2024-5-23

[6]
Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.

Brief Bioinform. 2024-5-23

[7]
Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.

BMC Bioinformatics. 2024-3-7

[8]
Recent Advances in Machine Learning-Based Models for Prediction of Antiviral Peptides.

Arch Comput Methods Eng. 2023-4-29

[9]
Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.

Bioinformatics. 2023-6-1

[10]
AFP-MFL: accurate identification of antifungal peptides using multi-view feature learning.

Brief Bioinform. 2023-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索