文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的肽类药物发现:迈向治疗性肽的自主设计。

Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.

机构信息

Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.

Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile.

出版信息

Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae275.


DOI:10.1093/bib/bbae275
PMID:38856172
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11163380/
Abstract

With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.

摘要

肽具有多样化的生物活性,是很有前途的治疗应用候选物,具有抗菌、抗肿瘤和激素信号传递的能力。尽管具有这些优势,但治疗性肽仍面临半衰期短、口服生物利用度有限和易受血浆降解等挑战。计算工具和人工智能 (AI) 在肽研究中的兴起,推动了先进方法和数据库的发展,这些方法和数据库在探索这些复杂的大分子方面起着关键作用。本文探讨了将 AI 整合到肽开发中,包括分类器方法、预测系统以及由生成对抗网络和变分自动编码器等深度生成模型促成的前沿设计。仍然存在一些挑战,例如需要进行处理优化和对预测模型进行仔细验证。本文概述了机器学习模型构建的传统策略和训练技术,并提出了一个全面的 AI 辅助肽设计和验证管道。强调了使用 AI 进行肽设计的不断发展的领域,展示了这些方法在加速基于肽的药物发现中新型肽的开发和发现方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/ae50586e1a8a/bbae275f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/6c3411497bb4/bbae275f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/787320c632a9/bbae275f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/9c493cace2b9/bbae275f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/ae50586e1a8a/bbae275f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/6c3411497bb4/bbae275f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/787320c632a9/bbae275f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/9c493cace2b9/bbae275f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1c/11163380/ae50586e1a8a/bbae275f4.jpg

相似文献

[1]
Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.

Brief Bioinform. 2024-5-23

[2]
Artificial intelligence to deep learning: machine intelligence approach for drug discovery.

Mol Divers. 2021-8

[3]
Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular Design, Dimensionality Reduction, and Peptide and Protein Design.

Molecules. 2020-7-16

[4]
De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.

J Chem Inf Model. 2022-2-28

[5]
Generative machine learning for de novo drug discovery: A systematic review.

Comput Biol Med. 2022-6

[6]
How can artificial intelligence be used for peptidomics?

Expert Rev Proteomics. 2021-7

[7]
Generative chemistry: drug discovery with deep learning generative models.

J Mol Model. 2021-2-4

[8]
The role and future prospects of artificial intelligence algorithms in peptide drug development.

Biomed Pharmacother. 2024-6

[9]
Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides.

Int J Mol Sci. 2024-8-14

[10]
Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.

Mol Divers. 2021-8

引用本文的文献

[1]
The impact of artificial intelligence on drug discovery for neuropsychiatric disorders.

EXCLI J. 2025-7-3

[2]
Animal Venoms as Potential Antitumor Agents Against Leukemia and Lymphoma.

Cancers (Basel). 2025-7-14

[3]
Peptide-based therapeutic and delivery strategies for inflammatory bowel disease: challenges and future directions.

RSC Adv. 2025-7-18

[4]
Peptide-Drug Conjugates: A New Hope for Cancer.

J Pept Sci. 2025-8

[5]
AMCL: supervised contrastive learning with hard sample mining for multi-functional therapeutic peptide prediction.

BMC Biol. 2025-7-1

[6]
Peptide-Based Nanoparticle for Tumor Therapy.

Biomedicines. 2025-6-9

[7]
Optimal Descriptor Subset Search via Chemical Information and Target Activity-Guided Algorithm for Antimicrobial Peptide Prediction.

J Chem Inf Model. 2025-7-14

[8]
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.

Biomolecules. 2025-4-3

[9]
Defatted chia ( L.) flour peptides: Exploring nutritional profiles, techno-functional and bio-functional properties, and future directions.

Curr Res Food Sci. 2025-3-17

[10]
A Review of In Silico and In Vitro Approaches in the Fight Against Carbapenem-Resistant Enterobacterales.

J Clin Lab Anal. 2025-5

本文引用的文献

[1]
Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.

Wiley Interdiscip Rev Comput Mol Sci. 2024

[2]
Design of target specific peptide inhibitors using generative deep learning and molecular dynamics simulations.

Nat Commun. 2024-2-21

[3]
Automatic generation of functional peptides with desired bioactivity and membrane permeability using Bayesian optimization.

Mol Inform. 2024-4

[4]
PepAnalyzer: predicting peptide properties using its sequence.

Amino Acids. 2023-10

[5]
Transfer learning enables predictions in network biology.

Nature. 2023-6

[6]
Discovering highly potent antimicrobial peptides with deep generative model HydrAMP.

Nat Commun. 2023-3-15

[7]
AI for life: Trends in artificial intelligence for biotechnology.

N Biotechnol. 2023-5-25

[8]
AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.

Bioinform Adv. 2022-10-26

[9]
HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures.

Bioinformatics. 2023-1-1

[10]
Application of a deep generative model produces novel and diverse functional peptides against microbial resistance.

Comput Struct Biotechnol J. 2022-12-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索