Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.
Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae275.
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
肽具有多样化的生物活性,是很有前途的治疗应用候选物,具有抗菌、抗肿瘤和激素信号传递的能力。尽管具有这些优势,但治疗性肽仍面临半衰期短、口服生物利用度有限和易受血浆降解等挑战。计算工具和人工智能 (AI) 在肽研究中的兴起,推动了先进方法和数据库的发展,这些方法和数据库在探索这些复杂的大分子方面起着关键作用。本文探讨了将 AI 整合到肽开发中,包括分类器方法、预测系统以及由生成对抗网络和变分自动编码器等深度生成模型促成的前沿设计。仍然存在一些挑战,例如需要进行处理优化和对预测模型进行仔细验证。本文概述了机器学习模型构建的传统策略和训练技术,并提出了一个全面的 AI 辅助肽设计和验证管道。强调了使用 AI 进行肽设计的不断发展的领域,展示了这些方法在加速基于肽的药物发现中新型肽的开发和发现方面的实用性。
J Chem Inf Model. 2022-2-28
Comput Biol Med. 2022-6
Expert Rev Proteomics. 2021-7
J Mol Model. 2021-2-4
Biomed Pharmacother. 2024-6
Cancers (Basel). 2025-7-14
J Pept Sci. 2025-8
Biomedicines. 2025-6-9
Biomolecules. 2025-4-3
Wiley Interdiscip Rev Comput Mol Sci. 2024
Amino Acids. 2023-10
Nat Commun. 2023-3-15
N Biotechnol. 2023-5-25
Bioinformatics. 2023-1-1
Comput Struct Biotechnol J. 2022-12-19