Harada Masayo, Murakami Hirotaka, Okawa Akihiko, Okimoto Noriaki, Hiraoka Shuichi, Nakahara Taka, Akasaka Ryogo, Shiraishi Yo-Ichi, Futatsugi Noriyuki, Mizutani-Koseki Yoko, Kuroiwa Atsushi, Shirouzu Mikako, Yokoyama Shigeyuki, Taiji Makoto, Iseki Sachiko, Ornitz David M, Koseki Haruhiko
RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
Nat Genet. 2009 Mar;41(3):289-98. doi: 10.1038/ng.316. Epub 2009 Feb 15.
The spontaneous dominant mouse mutant, Elbow knee synostosis (Eks), shows elbow and knee joint synosotsis, and premature fusion of cranial sutures. Here we identify a missense mutation in the Fgf9 gene that is responsible for the Eks mutation. Through investigation of the pathogenic mechanisms of joint and suture synostosis in Eks mice, we identify a key molecular mechanism that regulates FGF9 signaling in developing tissues. We show that the Eks mutation prevents homodimerization of the FGF9 protein and that monomeric FGF9 binds to heparin with a lower affinity than dimeric FGF9. These biochemical defects result in increased diffusion of the altered FGF9 protein (FGF9(Eks)) through developing tissues, leading to ectopic FGF9 signaling and repression of joint and suture development. We propose a mechanism in which the range of FGF9 signaling in developing tissues is limited by its ability to homodimerize and its affinity for extracellular matrix heparan sulfate proteoglycans.
自发显性小鼠突变体“肘膝融合症(Eks)”表现出肘关节和膝关节融合以及颅缝过早融合。在此,我们鉴定出Fgf9基因中的一个错义突变,该突变导致了Eks突变。通过对Eks小鼠关节和缝融合的致病机制进行研究,我们确定了一种在发育组织中调节FGF9信号传导的关键分子机制。我们发现Eks突变阻止了FGF9蛋白的同二聚化,并且单体FGF9与肝素的结合亲和力低于二聚体FGF9。这些生化缺陷导致改变后的FGF9蛋白(FGF9(Eks))在发育组织中扩散增加,从而导致异位FGF9信号传导并抑制关节和缝的发育。我们提出了一种机制,即发育组织中FGF9信号传导的范围受到其同二聚化能力及其对细胞外基质硫酸乙酰肝素蛋白聚糖亲和力的限制。