Suppr超能文献

利用全外显子组测序和突变特征检测癌症中的同源重组缺陷

Leveraging Whole-Exome Sequencing and Mutational Signatures to Detect Homologous Recombination Deficiency in Cancer.

作者信息

Lim Joonoh, Ju Young Seok

机构信息

Inocras Inc., San Diego, California.

Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

出版信息

Cancer Res. 2025 Jul 2;85(13):2348-2350. doi: 10.1158/0008-5472.CAN-25-2105.

Abstract

Homologous recombination is a high-fidelity DNA repair mechanism essential for maintaining genome stability. Impairment of this pathway, often due to BRCA1 or BRCA2 inactivation, leads to homologous recombination deficiency (HRD), forcing cells to rely on error-prone mechanisms for repairing DNA double-strand breaks, such as nonhomologous or microhomology-mediated end joining. HRD is a clinically important biomarker, particularly in breast and ovarian cancers, as it predicts responsiveness to platinum-based chemotherapies and PARP inhibitors. However, current tests in the clinical setting, mostly based on targeted panel sequencing, lack specificity and lead to a substantial number of false positives. In contrast, whole-genome sequencing, despite its high accuracy, remains largely confined to research because of high costs and logistical constraints. In this issue of Cancer Research, Abbasi and colleagues present HRProfiler, a machine learning-based tool that accurately detects HRD using whole-exome sequencing (WES) data, which is increasingly accessible in clinical oncology. Notably, it demonstrates improved sensitivity in the WES setting compared with existing tools, such as HRDetect and SigMA. As WES continues to gain traction, HRProfiler offers a promising step toward democratizing HRD detection and enabling more precise, genomics-guided treatment strategies. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI. See related article by Abbasi et al., p. 2504.

摘要

同源重组是一种高保真DNA修复机制,对维持基因组稳定性至关重要。该途径的损伤通常由于BRCA1或BRCA2失活导致同源重组缺陷(HRD),迫使细胞依靠易出错的机制修复DNA双链断裂,如非同源或微同源介导的末端连接。HRD是一种临床上重要的生物标志物,尤其是在乳腺癌和卵巢癌中,因为它可预测对铂类化疗和PARP抑制剂的反应性。然而,临床环境中的当前检测大多基于靶向测序面板,缺乏特异性并导致大量假阳性。相比之下,全基因组测序尽管准确性高,但由于成本高和后勤限制,在很大程度上仍局限于研究。在本期《癌症研究》中,阿巴西及其同事介绍了HRProfiler,这是一种基于机器学习的工具,可使用全外显子组测序(WES)数据准确检测HRD,而WES数据在临床肿瘤学中越来越容易获得。值得注意的是,与现有工具(如HRDetect和SigMA)相比,它在WES环境中显示出更高的灵敏度。随着WES继续获得认可,HRProfiler朝着使HRD检测民主化以及实现更精确的、基因组学指导的治疗策略迈出了充满希望的一步。本文是一个特别系列的一部分:通过计算研究、数据科学和机器学习/人工智能推动癌症发现。见阿巴西等人的相关文章,第2504页。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验