Suppr超能文献

HRProfiler利用全基因组和全外显子组测序数据检测乳腺癌和卵巢癌中的同源重组缺陷。

HRProfiler Detects Homologous Recombination Deficiency in Breast and Ovarian Cancers Using Whole-Genome and Whole-Exome Sequencing Data.

作者信息

Abbasi Ammal, Steele Christopher D, Bergstrom Erik N, Khandekar Azhar, Farswan Akanksha, McKay Rana R, Pillay Nischalan, Alexandrov Ludmil B

机构信息

University of California, San Diego, La Jolla, CA, United States.

University College London, United Kingdom.

出版信息

Cancer Res. 2025 May 6. doi: 10.1158/0008-5472.CAN-24-2639.

Abstract

Breast and ovarian cancers harboring homologous recombination deficiency (HRD) are sensitive to PARP inhibitors and platinum chemotherapy. Conventionally, detecting HRD involves screening for defects in BRCA1, BRCA2, and other relevant genes. Recent analyses have shown that HRD cancers exhibit characteristic mutational signatures due to the activities of HRD-associated mutational processes. At least three machine learning tools exist for detecting HRD based on mutational patterns. Here, using sequencing data from 1,043 breast and 182 ovarian cancers, we trained Homologous Recombination Proficiency Profiler (HRProfiler), a machine learning method for detecting HRD using six mutational features. The performance of HRProfiler was assessed against prior approaches using additional independent datasets of 417 breast and 115 ovarian cancers, including retrospective data from a clinical trial involving patients treated with PARP inhibitors. Individual HRD-associated mutational signatures alone did not consistently detect HRD or predict clinical response across datasets. Notably, while all tools performed comparably for whole-genome sequenced cancers, HRProfiler was the only approach that consistently identified HRD in whole-exome sequenced breast and ovarian cancers, offering clinically relevant insights. Retrospective analyses provided strong evidence that HRProfiler could serve as a valuable tool for predicting HRD and clinical response in breast and ovarian cancers. This study provides the rational for large-scale prospective clinical trials to validate the potential of HRProfiler as a routine predictive and/or prognostic HRD biomarker to guide clinical decision-making.

摘要

存在同源重组缺陷(HRD)的乳腺癌和卵巢癌对PARP抑制剂及铂类化疗敏感。传统上,检测HRD涉及筛查BRCA1、BRCA2及其他相关基因的缺陷。近期分析表明,由于HRD相关突变过程的作用,HRD癌症呈现出特征性的突变特征。至少有三种基于突变模式检测HRD的机器学习工具。在此,我们使用1043例乳腺癌和182例卵巢癌的测序数据,训练了同源重组能力分析器(HRProfiler),这是一种利用六个突变特征检测HRD的机器学习方法。我们使用417例乳腺癌和115例卵巢癌的额外独立数据集(包括一项涉及接受PARP抑制剂治疗患者的临床试验的回顾性数据),针对先前的方法评估了HRProfiler的性能。单独的HRD相关突变特征在各数据集中并不能始终如一地检测出HRD或预测临床反应。值得注意的是,虽然所有工具在全基因组测序的癌症中表现相当,但HRProfiler是唯一能在全外显子组测序的乳腺癌和卵巢癌中始终识别出HRD的方法,提供了临床相关的见解。回顾性分析提供了有力证据,表明HRProfiler可作为预测乳腺癌和卵巢癌中HRD及临床反应的有价值工具。本研究为大规模前瞻性临床试验提供了理论依据,以验证HRProfiler作为常规预测和/或预后HRD生物标志物指导临床决策的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验