Suppr超能文献

基于机器学习的预测模型:预测血清γ-klotho水平对冠心病易感性的影响

Machine Learning-Based Prediction Model for Predicting the Effect of the Serum γKlotho Level on Susceptibility to Coronary Heart Disease.

作者信息

Guo Zi-Tong, Yu Xiao-Lin, Cheng Hui, Naman Tuersunjiang

机构信息

Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.

Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China.

出版信息

Vasc Health Risk Manag. 2025 May 27;21:425-436. doi: 10.2147/VHRM.S508351. eCollection 2025.

Abstract

OBJECTIVE

This study investigates the relationship between serum γKlotho levels and coronary heart disease (CHD) risk and develops a machine learning model for CHD prediction.

METHODS

A total of 1435 subjects were enrolled for analysis and randomized as training (n = 969, 70%) or validation (n = 466, 30%) group. The training group was used for univariate regression. Thereafter, least absolute shrinkage and selection operator (LASSO) regression was conducted for selecting independent risk factors for CHD. Using independent risk factors for CHD, nine machine learning models were developed, the best model was selected by evaluating them, and the model was validated by decision curve analysis (DCA).

RESULTS

The factors independently associated with CHD risk were age, the serum level of γKlotho, LDL-C, sex, diabetes, hypertension, and smoking status. We used these risk factors to construct nine popular machine-learning models. Among all models, the RF model was better appropriate; thus, we visualized and validated this model, which showed promising clinical application.

CONCLUSION

Serum γKlotho levels are novel biomarker which positively related to CHD risk. Additionally, the RF model can better predict the risk of CHD, and RF model is better appropriate to predicting the CHD risk in clinics.

摘要

目的

本研究调查血清γ-klotho水平与冠心病(CHD)风险之间的关系,并开发一种用于CHD预测的机器学习模型。

方法

共纳入1435名受试者进行分析,并随机分为训练组(n = 969,70%)和验证组(n = 466,30%)。训练组用于单变量回归。此后,进行最小绝对收缩和选择算子(LASSO)回归以选择CHD的独立危险因素。利用CHD的独立危险因素,开发了9种机器学习模型,通过评估选择最佳模型,并通过决策曲线分析(DCA)对模型进行验证。

结果

与CHD风险独立相关的因素为年龄、γ-klotho血清水平、低密度脂蛋白胆固醇(LDL-C)、性别、糖尿病、高血压和吸烟状况。我们使用这些危险因素构建了9种常用的机器学习模型。在所有模型中,随机森林(RF)模型更为合适;因此,我们对该模型进行了可视化和验证,结果显示其具有良好的临床应用前景。

结论

血清γ-klotho水平是一种与CHD风险呈正相关的新型生物标志物。此外,RF模型能够更好地预测CHD风险,且更适用于临床CHD风险预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8b/12212001/ff3891ac55f3/VHRM-21-425-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验