Suppr超能文献

具有增强力学和矿化性能的乙酰半胱氨酸和前肾上腺髓质素双交联明胶-壳聚糖水凝胶

-Acetylcysteine and pro-adrenomedullin dual-crosslinked gelatin-chitosan hydrogels with enhanced mechanical and mineralization performance.

作者信息

Zertuche-Arias Tonatzin, Alatorre-Meda Manuel, Rivero Ignacio A, Juárez Patricia, Castro-Ceseña Ana B

机构信息

Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada Baja California Mexico

Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Carretera Ensenada-Tijuana Km 107, C.P. 22800 Ensenada Baja California Mexico.

出版信息

RSC Adv. 2025 Jul 1;15(28):22524-22533. doi: 10.1039/d5ra03349g. eCollection 2025 Jun 30.

Abstract

Bone regeneration requires coordination between bone formation, vascularization, and inflammatory regulation. However, current biomaterials often fail to provide mechanical stability and sustained bioactivity while supporting cell viability. This study presents the development and characterization of hydrogels composed of methacrylated gelatin (GelMA) and chitosan methacrylate (ChMA), crosslinked by photopolymerization (GC hydrogels). These were evaluated for their mineralization potential and when loaded with -acetylcysteine (NAC), a bioactive antioxidant (GCN); a pro-angiogenic peptide derived from adrenomedullin (PAMP, GCP); or both compounds (GCNP). FT-IR spectroscopy confirmed successful polymer methacrylation and the interaction of NAC with the polymer network. Scanning electron microscopy revealed that NAC increased the pore size from 24.49 ± 14.19 μm (GC) to 200.49 ± 80.42 μm (GCN). NAC also enhanced mechanical performance, with GCN exhibiting the highest compressive strength (151.79 ± 44.81 kPa) and GCNP the highest stiffness (Young's modulus: 55.26 ± 5.79 kPa). NAC-containing hydrogels degraded faster than GC, enabling biphasic release over 14 days. and assays using pre-osteoblastic cells and a calvarial defect model demonstrated that GCNP hydrogels significantly enhanced cell viability and mineralization, increasing calcium deposition by 2.5-fold compared to GC ( < 0.01). These findings suggest that NAC not only reinforces the mechanical strength of hydrogel scaffolds designed for temporary support in non-load-bearing bone defects, but also acts as a bioactive agent upon release. Its combination with the pro-adrenomedullin peptide (PAMP) results in synergistic effects on mineralization. GCNP hydrogels are therefore promising candidates for drug delivery and bone tissue regeneration.

摘要

骨再生需要骨形成、血管生成和炎症调节之间的协调。然而,目前的生物材料在支持细胞活力的同时,往往无法提供机械稳定性和持续的生物活性。本研究介绍了通过光聚合交联的甲基丙烯酸化明胶(GelMA)和甲基丙烯酸壳聚糖(ChMA)组成的水凝胶(GC水凝胶)的开发和表征。对其矿化潜力进行了评估,当负载生物活性抗氧化剂N-乙酰半胱氨酸(NAC)(GCN)、源自肾上腺髓质素的促血管生成肽(PAMP,GCP)或两种化合物(GCNP)时。傅里叶变换红外光谱证实了聚合物甲基丙烯酸化的成功以及NAC与聚合物网络的相互作用。扫描电子显微镜显示,NAC将孔径从24.49±14.19μm(GC)增加到200.49±80.42μm(GCN)。NAC还增强了机械性能,GCN表现出最高的抗压强度(151.79±44.81kPa),GCNP表现出最高的刚度(杨氏模量:55.26±5.79kPa)。含NAC的水凝胶比GC降解得更快,能够在14天内实现双相释放。使用前成骨细胞和颅骨缺损模型的实验表明,GCNP水凝胶显著提高了细胞活力和矿化能力,与GC相比,钙沉积增加了2.5倍(P<0.01)。这些发现表明,NAC不仅增强了为非承重骨缺损临时支撑而设计的水凝胶支架的机械强度,而且在释放时还作为一种生物活性剂起作用。它与肾上腺髓质素前体肽(PAMP)的组合对矿化产生协同作用。因此,GCNP水凝胶是药物递送和骨组织再生的有前途的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4be/12212046/bf93f8323bf4/d5ra03349g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验